# Starfish: An Efficient P&R Co-Optimization Engine with A\*-based Partial Rerouting

Fangzhou Wang, Lixin Liu, Jingsong Chen, Jinwei Liu, Xinshi Zang, and Martin D.F. Wong

CSE Dept., The Chinese University of Hong Kong

Nov. 03, 2021

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○



Introduction

**Overall Flow** 

Introduction

**Overall Flow** 

# Placement and Routing (P&R)

#### A common two-stage flow

- Placement and Routing as 2 sub-problems
- Placement: decide the locations of circuit components
  - Objective: focuses on optimizing the half-perimeter wire length (HPWL) under cell/pin density constraints
- Routing: build the connection between cells
  - Objective: minimize the routed wire length and the number of overflows
- Pros: Reduction in design complexity
- Cons: Misalignment between objectives can degrade the final solution quality

## Misalignment between Placement and Routing



(a) Before Routing with Cell Movement (b) After Routing with Cell Movement

Illustration for routing with cell movement. Both (a) and (b) have the same HPWL, but the routed wire length in (b) is shorter.

# Routing with Cell Movement (ICCAD 2020 Contest)

#### Input

- 3D Design layout (L × R × C)
- Netlist and min-routing-layer for each net
- Initial placement and routing result
- Max-cell-move

#### Goals

Generate a set of placement and routing (P&R) results that

- minimize total routed wire length (that is, maximize the wire length reduction)
- comply with hard constraints:
  - max-cell-move
  - min-routing-layer
  - connectivity
  - preferred routing direction
  - overflow-free

Introduction

**Overall Flow** 

# **Overall Flow**

#### (1) Pre-processing

- Initial solution refinement
- Congestion-driven rerouting
- (2) Multi-threaded cell movement
  - Lookup table-based gain estimation
  - A\*-based partial rerouting
  - Selective net rerouting: detours removal
  - Gain threshold τ for implicit cell ordering

### (3) Post-processing

- Greedy cell put-back
- Wire length-driven rerouting



Introduction

**Overall Flow** 

# Comparison with the Top-3 Winners

#### Table: Experimental Results on the ICCAD 2020 Benchmark<sup>1</sup>

| Benchmarks |                      | 1st Place Team |        | 2nd Place Team |        | 3rd Place Team |        | Ours (Starfish) |        |                   |
|------------|----------------------|----------------|--------|----------------|--------|----------------|--------|-----------------|--------|-------------------|
| Case ID    | TWL <sub>input</sub> | Score          | RT (s) | Score          | RT (s) | Score          | RT (s) | Score           | RT (s) | R <sub>diff</sub> |
| case3      | 32600                | 11425          | 34     | 11428          | 4      | 11557          | 111    | 11610           | 2      | 0.356             |
| case4      | 4680681              | 2046811        | 2221   | 2048105        | 804    | 2037598        | 3441   | 2064790         | 260    | 0.441             |
| case5      | 1763627              | 695219         | 903    | 685173         | 183    | 682963         | 1213   | 699626          | 111    | 0.397             |
| case6      | 7188481              | 2721274        | 3171   | 2687926        | 2217   | 2656320        | 3511   | 2737028         | 684    | 0.381             |
| case3B     | 29748                | 11237          | 31     | 11073          | 4      | 11289          | 206    | 11327           | 1      | 0.381             |
| case4B     | 4886698              | 2182574        | 2299   | 2180172        | 786    | 2167411        | 3371   | 2200820         | 284    | 0.450             |
| case5B     | 1721530              | 664347         | 886    | 654797         | 237    | 654183         | 1226   | 668351          | 103    | 0.388             |
| case6B     | 7340802              | 2748097        | 3406   | 2722222        | 2801   | 2668052        | 3514   | 2785061         | 932    | 0.379             |
| Avg. ratio | -                    | 1.000          | 1.000  | 0.992          | 0.368  | 0.990          | 2.224  | 1.009           | 0.133  | 0.397             |

\* The score and runtime statistics of the top-3 winners are provided by the contest organizer with Intel Xeon E7-4820 CPU (2.00 GHz, 8 cores). For us, all experiments are run on a Linux machine with 2.90 GHz Intel Xeon CPU and 8 threaded enabled.

<sup>1</sup>Kai-Shun Hu et al. (2020). "ICCAD-2020 CAD contest in Routing with Cell Movement". In: Proc. ICCAD.

# **Thank You!**

### References

Hu, Kai-Shun, Ming-Jen Yang, Tao-Chun Yu, and Guan-Chuen Chen (2020). "ICCAD-2020 CAD contest in Routing with Cell Movement". In: *Proc. ICCAD*.