
CU.POKer: Placing DNNs on Wafer-Scale AI

Accelerator with Optimal Kernel Sizing

Bentian Jiang, Jingsong Chen, Jinwei Liu, Lixin Liu, Fangzhou Wang,
Xiaopeng Zhang, Evangeline F.Y. Young

CSE Dept., The Chinese University of Hong Kong

Nov. 03, 2020



Speaker Biography

Biography

I Bentian Jiang is currently pursuing a Ph.D. degree
with the Dept. of Computer Science & Engineering,
The Chinese University of Hong Kong, under the
supervision of Prof. Evangeline F.Y. Young.

I He is a recipient of several prizes in renowned EDA
contests including the CAD Contests at ICCAD
2018 and ISPD 2018, 2019, 2020.

Research Interests

I Design for manufacturability

I Physical design

1 / 27

http://www.cse.cuhk.edu.hk/~btjiang/
http://www.cse.cuhk.edu.hk/~fyyoung/


Outline

Overview

Kernel Sizing

Data-path-aware Kernel Placement

Protocol Optimization

Experimental Evaluations & Case Study

2 / 27



Outline

Overview

Kernel Sizing

Data-path-aware Kernel Placement

Protocol Optimization

Experimental Evaluations & Case Study



Simplified View CS-1 Compilation Flow

CS-1 WSE is one of the largest AI chip
with more than 400,000 programmable
compute cores. Figure from James et
al. ISPD’20 [2]

Conv 1

Conv 2

Conv 3

ResBlock 2

ResBlock 1

ResBlock 3

Input

Output

1

2

3

4

5

6

7

8

9

Output

Input

(a) Network Architecture (b) Kernel Graph (c) Execution Plan

Extract Place

Route

CS-1 WSE compilation flow, the proposed framework focuses
on the placement stage of compilation.

3 / 27



Kernel Definition

I conv : basic convolution kernel

H

W

C

K

R

T
U

(a) Arguments of conv (b) Performance of a kernel with 3 convs

width

h
ei
gh
t

co
n
v
1
.h

conv1.w

time = max
1≤i≤3

convi. time

kernel = (TP, H,W, F; h,w, c1, c2, c3, k1, k2, k3)

(h,w, c1, k1)

(H,W, F)

conv2.w

co
n
v
2
.h

(h,w, c2, k2)

conv3.w

co
n
v
3
.h

(h,w, c3, k3)

mem = max
1≤i≤3

convi.mem

I 8 formal arguments: (H, W, R, S, C, K, T, U) ⇒ fixed input parameters.

I 4 execution arguments: (h, w, c, k) ⇒ variables to be determined.

4 / 27



Kernel Evaluation

Performance Cuboid (height, width, time, memory) of conv

convperf(H, W, R, S, C, K, T, U︸ ︷︷ ︸
Formal arguments

; h, w, c, k︸ ︷︷ ︸
Execution arguments

) = {

height = h · w · (c+ 1)

width = 3k

time = ceil(
H

h
) · ceil(

W

w
) · ceil(

C

c
) · ceil(

K

k
) · RS

T 2

mem =
C

c
· K
k
·RS +

W + S − 1

w
· H +R− 1

h
· K
k

}

(1)

5 / 27



Kernel Evaluation

I For a certain type of kernel that contains n convs

Performance Cuboid (height, width, time, memory) of Kernel

blockperf(TP,H,W,F ;h,w, c1, ..., cn, k1, ..., kn) = {
convi = convperf(Hi,Wi, Ri, Si, Ci,Ki, Ti, Ui;h,w, ci, ki), ∀ i ∈ {1, ..., n}

height = max
1≤i≤n

convi.height, width =

n∑
i=1

convi.width

time = max
1≤i≤n

convi.time, mem = max
1≤i≤n

convi.mem

}

(2)

6 / 27



Problem Formulation

I Determine the execution parameters and the locations for all kernels.

Hard Constraints

I All kernels must fit within the fabric area (633 x 633 tiles).

I No kernels may overlap.

I No kernel’s memory exceeds the tile’s memory limit.

Objectives to Minimize

I The maximum execution time among all placed kernels.

I The total L1 distance of all connected kernels.

I The total adapter cost of all connected kernels.

costadapter = 1(hout! = hin) + 1(wout! = win) + 1(cout,n! = cin,1)

7 / 27



Overview of Proposed Flow

Initialize 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and 𝑏𝑒𝑠𝑡_𝑡𝑖𝑚𝑒.
Set lower_bound = 0, upper_bound = MAX_INT.

𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 + min_gap
≤ upper_bound

𝑡𝑎𝑟𝑔𝑒_𝑡𝑖𝑚𝑒 = (𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 + 𝑢𝑝𝑝𝑒r_𝑏𝑜𝑢𝑛𝑑)/2

Data-path aware kernel placement under 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒.

Have a legal
solution?

Update 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and 𝑏𝑒𝑠𝑡_𝑡𝑖𝑚𝑒 if needed.
Set 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒.

Set 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒.

Neighbor-range search based on 𝑏𝑒𝑠𝑡_𝑡𝑖𝑚𝑒 .

Post refinement on 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

Kernel candidate generation under 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒.

No
Yes

No

Yes

Binary search

Output 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

Two-steps Search

I Binary search
I Rapidly locate a good and feasible

maximum execution time slot

I Neighbor-range search
I Further improve the solution

I Post refinement
I Optimize adapter cost and

wirelength further

Searching under Target Time

I Kernel candidates generation with
optimal shapes under given target time

I Data-path aware placement

8 / 27



Outline

Overview

Kernel Sizing

Data-path-aware Kernel Placement

Protocol Optimization

Experimental Evaluations & Case Study



Kernel Sizing

I Goal: find all kernel candidates with optimal shapes and satisfying a given
target time constraint.

I Motivation 1: the optimal wire length can be achieved by using the kernels with
optimal shapes only (under a given target time constraint).

I Motivation 2: the optimal shaped kernel set is relatively small (< 633/2).

9 / 27



Optimal Shapes

Optimal shapes

I A kernel is regarded as having optimal shape if and only if there doesn’t exist
another kernel satisfying the same target time constraint and having a better
shape.

time = 32

time = 12

time = 16
time = 10

4

4 6 4 6

6

8
7

For target time = 16, only the second and the third shapes are regarded as optimal.

10 / 27



A Simplification

It seems that enforcing c1 = c2 = ... = cx = c in the cuboid performance equation will
not sacrifice optimality.

Observation

For any argument {h,w, c1, ..., cx, k1, ..., kx}, there exist a c = max(c1, ..., cx) such
that

ker1 = blockperf(TP,H,W,F ;h,w, c, ..., c, k1, ..., kx),

is no worse than

ker2 = blockperf(TP,H,W,F ;h,w, c1, ..., cx, k1, ..., kx)

with regard to height, width, time and memory.

11 / 27



Optimization View

Solving The Optimal width For height = η (η = 1, ..., 633)

Minimize:
h,w,c,k1,...,kx

width

Such that: height = h · w · (c+ 1) = η

width =

x∑
j=1

3kj

time = max
1≤j≤x

ceil(
Hj

h
)ceil(

Wj

w
)ceil(

Cj

c
)ceil(

Kj

kj
)
RjSj
T 2
j

≤ target time

mem = max
1≤j≤x

CjKjRjSj
ckj

+
(Wj + Sj − 1)(Hj +Rj − 1)Kj

whkj

≤ memory limit

(3)

12 / 27



Method to Solve It

I Factorize η to get all the possible values of {h,w, c+ 1}.
I For each {h,w, c+ 1}, solve the following equations to get the minimum ks.

Getting the ks

For j = 1, ..., x :

ktj = ceil(ceil(
Hj

h
)ceil(

Wj

w
)ceil(

Cj

c
)

RjSjKj

T 2
j · target time

)

kmj = ceil(
CjKjRjSj

c ·memory limit
+

(Wj + Sj − 1)(Hj +Rj − 1)Kj

wh ·memory limit
)

kj = max(ktj , k
m
j )

(4)

13 / 27



Final Pruning

An example solution (red) of kernel sizing after final pruning (with rotation consideration).

14 / 27



Outline

Overview

Kernel Sizing

Data-path-aware Kernel Placement

Protocol Optimization

Experimental Evaluations & Case Study



Data-path-aware Kernel Placement

Overall Flow

I Given a target time T , generate all the kernel candidates with optimal shapes and
execution times under T .

I According to the connectivity graph, generate the topological order of the kernels
for placement.

I Place the kernels compactly row by row in the topological order.

15 / 27



Algorithm

h1

h2

h3

Data-path-aware Kernel Placement
1: function Placement(next index, target time, floor height)
2: Hk ← a sorted height set of all the kernel candidates
3: for each height h in Hk do
4: if h + floor height > chip height then
5: break
6: end if
7: widle ← chip width
8: max height← 0
9: for i = next index, ..., num kernel do

10: wi ← minimum width of the ith kernel’s candidates meeting
the requirements of target time and h

11: hi ← the corresponding height of wi
12: if wi > widle then
13: i← i− 1
14: break
15: else
16: widle ← widle − wi
17: max height← max(max height, hi)
18: end if
19: end for
20: if i < next index then
21: continue
22: end if
23: Place the kernels of indices from next index to i in a row on

floor height
24: if i ≡ num kernel then
25: Update the best solution if needed
26: else
27: floor height← floor height + max height
28: Placement(i, target time, floor height)
29: end if
30: end for
31: end function

16 / 27



Pruning

h2 h3

h1

Not Enough

Not Enough

Two Pruning Steps

1. After placing one kernel, check if the remaining empty space on the fabric is less
than the smallest total area of the kernels yet to be placed. If so, stop the current
placement iteration.

2. Skip the “redundant” heights when traversing Hk to avoid unnecessary iterations.

17 / 27



Outline

Overview

Kernel Sizing

Data-path-aware Kernel Placement

Protocol Optimization

Experimental Evaluations & Case Study



Protocol Cost Optimization

Wasted Deadspace

I Not every kernel will have its height equal to the floor height.

I Suppose there are n kernels on the ith floor of the layout, for each kernel keri,j ,
j ∈ {1, ..., n}, we have

keri,j .height ≤ floori.height = max
1≤j≤n

keri,j .height.

I If keri,j .height < floori.height, exists deadspace with

∆heighti,j = (floori.height− keri,j .height), widthi,j = keri,j .width (5)

18 / 27



Protocol Cost Optimization

Unifying (h, w) Pair for Each Floor

I Assume keri,j , the jth kernel on the ith floor, contains m (conv), we have

keri,j .height = h · w · (cmax + 1) = max
1≤j≤m

h · w · (cj + 1).

I Let new keri,j .height = floori.height = (keri,j .height+ ∆heighti,j), a new cmax

can be uniquely determined by a given reference pair (href ,wref)

cmax = floori.height/(href · wref )− 1.

I A new assignment for keri,j ’s arguments (c1, ..., cm) is given by c1 = ... = cm = cmax

I We may unify the (h,w) for all kernels in the same floor with same (href ,wref) and
hereby reduce the adapter cost since we place them in topological order and

costadapter = 1(hout! = hin) + 1(wout! = win) + 1(cout,n! = cin,1)

19 / 27



Protocol Cost Optimization

A Universal Scheme

I Greedy search for each floor, all possible
reference pairs will be evaluated and the
one leading to the best adapter cost will
be committed.

I Regardless of kernel protocol functions.

I Worst case complexity is bounded by
O(n2), but there are only thousand kernels
at most (negligible runtime) in practice.

Further Improvement

I The rest element, which is related to the
protocol function, can be optimized via
dynamic programming.

W/O Adapter Opt. W/ Adapter Opt.

Case AC* Ratio AC* Ratio

A 15 1.00 15 1.00

B 18 1.00 18 1.00

C 234 1.00 185 0.79

D 139 1.00 123 0.88

E 11 1.00 11 1.00

F 13 1.00 12 0.92

G 221 1.00 98 0.44

H 77 1.00 49 0.64

I 13 1.00 13 1.00

J 193 1.00 69 0.36

K 9 1.00 3 0.33

L 140 1.00 18 0.13

M 41 1.00 41 1.00

N 10 1.00 10 1.00

O 13 1.00 13 1.00

P 154 1.00 85 0.55

Q 6 1.00 6 1.00

R 68 1.00 20 0.29

S 60 1.00 48 0.80

T 4 1.00 4 1.00

Avg. 71.95 1.00 42.05 0.76

20 / 27



Outline

Overview

Kernel Sizing

Data-path-aware Kernel Placement

Protocol Optimization

Experimental Evaluations & Case Study



Simulated Annealing Placer

SA Placer with Twin Binary Sequences

I Most commonly used floorplan heuristic.

I SA-based placer with the twin binary
sequences (TBS) representation [3].

I Compact packing is used to realize a
layout from a given TBS.

I On 8 public benchmarks, 11% better than
the best contestant (4th) using SA placer.

Actions

I Pick up a new kernel candidate.

I Swap two kernels.

I Rotate the sequences to change the
packing topology.

Kgraph-F by Simulated Annealing Placer.

21 / 27



Divide and Conquer Placer

Slicing Placer

I Top-down phase for graph partition.
I Sub-graphs of each level should have

I Similar total area
I Fewer interconnections.

I Bottom-up phase to commit and merge
placement results.

I On 8 public benchmarks, 32% better than
the best contestant (4th) using SA placer.

Kgraph-F by Divide and Conquer Placer.

22 / 27



Comparisons with Conventional Floorplanning Heuristics

Layout comparisons with SA and DC placers on kgraph-f.

23 / 27



Comparisons with Conventional Floorplanning Heuristics

Performance comparisons with SA and DC placers on 8 public benchmarks.

24 / 27



Comparisons with Conventional Floorplanning Heuristics

Observations

I Common floorplanning heuristics
cannot handle this challenge well.

I SA-based placer is too general,
solution space is too large.
I Connections are mostly aligned

data paths with some forks.
I Have many choices of candidate

shapes.

I DC-based placer is fast, but has
inevitable detour (layout layers
number is strictly proportional to
the size of input kernel graph).

Runtime comparisons with SA and DC placers.

25 / 27



Experimental Results on ISPD-20 Suite [1]

Our CU.POKer won the 1st place in ISPD 2020 contest

Comparing to GigaPlacer (2nd place)

I 16% better on all testcases, 25% better on hidden testcases

Comparing to CUPID (3rd place)

I 30% better on all testcases, 46% better on hidden testcases

Comparing to SA placer

I 52% better on all testcases, 61% better on hidden testcases

Comparing to Slicing placer

I 37% better on all testcases, 58% better on hidden testcases

26 / 27



Q&A

Thanks and Questions?

27 / 27



ISPD 2020 Contest: Wafer-Scale Deep Learning Accelerator Placement.
https://www.cerebras.net/ispd-2020-contest/.

James, M., Tom, M., Groeneveld, P., and Kibardin, V.
Ispd 2020 physical mapping of neural networks on a wafer-scale deep learning
accelerator.
In Proceedings of the 2020 International Symposium on Physical Design (New
York, NY, USA, 2020), ISPD ’20, Association for Computing Machinery,
p. 145–149.

Young, E. F., Chu, C. C., and Shen, Z. C.
Twin binary sequences: a nonredundant representation for general nonslicing
floorplan.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
22, 4 (2003), 457–469.

27 / 27

https://www.cerebras.net/ispd-2020-contest/

	Main Talk
	Overview
	Kernel Sizing
	Data-path-aware Kernel Placement
	Protocol Optimization
	Experimental Evaluations & Case Study


