

Xplace: An Extremely Fast and Extensible Global Placement Framework

Lixin Liu, Bangqi Fu, Martin D.F. Wong, Evangeline F.Y. Young CSE Department

The Chinese University of Hong Kong

Global Placement Problem

A fundamental step in VLSI physical design

• Highly affect the circuit's PPA

Modern circuits contain millions of standard cells

- Highly increase the computational complexity of GP
- Bring huge challenges to the leading-edge global placers

Global Placement Problem

Objective:

- Minimize the total HPWL of all the nets
- Satisfy the cell density constraint

- A smooth approximation of HPWL
- A density penalty

$$\min_{p} HPWL(p) = \min_{p} \sum_{e \in E} HPWL_{e}(p)$$

s.t. $D_{b} \leq D_{t}, \forall b \in B$

$$\min_{p} \sum_{e \in E} WL_e(p) + \lambda D(p)$$

[1] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng, et al., "ePlace-MS: Electrostaticsbased placement for mixed-size circuits," IEEE TCAD 2015

GPU-accelerated Global Placers

- Rapid development of GPU's computational power
- GPU acceleration becomes an important direction

Recently, DREAMPlace[1]

- Implemented the approach of ePlace[2] on GPU
- Produced the SOTA solution quality and performance

It is a big challenge to further improve on DREAMPlace's performance.

https://www.nvidia.com/en-in/data-center/a100/

https://assets.nvidia.partners/images/png/nvidia-geforce-rtx-3090.png

 Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, "DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement," IEEE TCAD 2020
J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng, et al., "ePlace-MS: Electrostaticsbased placement for mixed-size circuits," IEEE TCAD 2015

Proposed Framework: Xplace

ON

1. Wirelength Operator Combination (OC)

Observation: Both the HPWL function and the stable WA wirelength function need the min and max cell positions in a net.

Method: combining the three operators with heavy wirelength-related workload, *WA wirelength*, *WA gradient* and *HPWL*, into one operator

Result: avoid redundant computation of the min and max function

 $HPWL_{e}(p) = \max_{i \in e} x_{i} + \min_{i \in e} x_{i}) + (\max_{i \in e} y_{i} + \min_{i \in e} y_{i})$ HPWL function $WL_{e}(x) = \frac{\sum_{i \in e} x_{i}e^{\frac{x_{i} + \max_{j \in e} x_{j}}{Y}}}{\sum_{i \in e} e^{\frac{x_{i} - \max_{j \in e} x_{j}}{Y}}} - \frac{\sum_{i \in e} x_{i}e^{\frac{\min_{j \in e} x_{j} + x_{i}}{Y}}}{\sum_{i \in e} e^{\frac{\min_{j \in e} y_{j} + y_{i}}{Y}}}$ $WL_{e}(y) = \frac{\sum_{i \in e} y_{i}e^{\frac{y_{i} + \max_{j \in e} y_{j}}{Y}}}{\sum_{i \in e} e^{\frac{y_{i} + \max_{j \in e} y_{j}}{Y}}} - \frac{\sum_{i \in e} y_{i}e^{\frac{\min_{j \in e} y_{j} - y_{i}}{Y}}}{\sum_{i \in e} e^{\frac{\min_{j \in e} y_{j} - y_{i}}{Y}}}$ $WL_{e}(y) = \frac{\sum_{i \in e} y_{i}e^{\frac{y_{i} + \max_{j \in e} y_{j}}{Y}}}{\sum_{i \in e} e^{\frac{y_{i} + \max_{j \in e} y_{j}}{Y}}} - \frac{\sum_{i \in e} y_{i}e^{\frac{\min_{j \in e} y_{j} - y_{i}}{Y}}}{\sum_{i \in e} e^{\frac{\min_{j \in e} y_{j} - y_{i}}{Y}}}$ Stable WA wirelength

2. Density Operator Extraction (OE)

Overflow ratio and density computation:

$$OVFL = \frac{\sum_{b \in B} \max(D_b - D_t, 0)A_b}{\sum_{i \in V_{mov}} A_i} \qquad D_b = \frac{\sum_{i \in V} A_i \cap A_b}{A_b}, \ \forall b \in B$$

 D_t : target density, D_b : bin b's cell density, A_b and A_t denote the area for bin b and cell i,

2. Density Operator Extraction (OE)

Overflow ratio and density computation:

$$OVFL = \frac{\sum_{b \in B} \max(D_b - D_t, 0)A_b}{\sum_{i \in V_{mov}} A_i} \qquad D_b = \frac{\sum_{i \in V} A_i \cap A_b}{A_b}, \ \forall b \in B$$

 D_t : target density, D_b : bin b's cell density, A_b and A_t denote the area for bin b and cell i,

Need to insert filler cells inside the electrostatic system [1]

 $D_{fl,b}$: Bin *b*'s filler density

 $\tilde{D}_b = \frac{\sum_{i \in V \cup V_{fl}} A_i \cap A_b}{A_b} = D_b + \frac{\sum_{i \in V_{fl}} A_i \cap A_b}{A_b}, \forall b \in B$

V: the set of cells, V_{fl} : the set of fillers, $\widetilde{D_b}$: bin *b*'s total density (incl. filler density)

[1] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng, et al., "ePlace-MS: Electrostaticsbased placement for mixed-size circuits," IEEE TCAD 2015

2. Density Operator Extraction (OE)

Overflow ratio and density computation:

$$OVFL = \frac{\sum_{b \in B} \max(D_b - D_t, 0)A_b}{\sum_{i \in V_{mov}} A_i} \qquad D_b = \frac{\sum_{i \in V} A_i \cap A_b}{A_b}, \ \forall b \in B$$

 D_t : target density, D_b : bin b's cell density, A_b and A_t denote the area for bin b and cell i,

Need to insert filler cells inside the electrostatic system [1]

$$\tilde{D} = D + D_{fl}$$

Matrix form of the total density map. \tilde{D} , D, $D_{fl} \in \mathbb{R}^{M \times M}$, M is the grid size

[1] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng, et al., "ePlace-MS: Electrostaticsbased placement for mixed-size circuits," IEEE TCAD 2015

2. Density Operator Extraction (OE)

$$OVFL = \frac{\sum_{b \in B} \max(D_b - D_t, 0)A_b}{\sum_{i \in V_{mov}} A_i} \quad \tilde{D} = D + D_{fl}$$

Observation: Both the calculation of *OVFL* and total density map \widetilde{D} need the cell density map *D*.

Method: common sub-operator D extraction, compute the cell density map D and the filler density map D_{fl} separately

2. Density Operator Extraction (OE)

$$OVFL = \frac{\sum_{b \in B} \max(D_b - D_t, 0)A_b}{\sum_{i \in V_{mov}} A_i} \quad \tilde{D} = D + D_{fl}$$

Observation: Both the calculation of *OVFL* and total density map \widetilde{D} need the cell density map *D*.

Result: reduce the total computation time of the cell density map *D*.

3. Operator Reduction (OR)

Observation:

- The number of forward operators are almost the same as that in the backward
- Invoking the heavy autograd engine will almost <u>double the number of operators</u> and bring <u>large kernel launching overhead on CPU</u>
 Method:
- Avoid invoking the heavy autograd engine
- Directly derive the numerical solutions of the WL / density grad
- Assign a weighted accumulated gradient to each cell

Result: Reduce the total kernel launching time

3. Operator Reduction (OR)

Other Methods:

- Use in-place operators as much as possible
 - Avoid redundant copying
- Reorder the operators that need sync to the end of the execution queue
 - Reduce the frequency of interrupting the GPU pipeline

4. Operator Skipping (OS)

Observation:

• The ratio $r = \frac{\lambda |\nabla D_{x,y}|}{|\nabla W L_{x,y}|}$ is ultra-small in the early placement stage

Method:

 When (r < 0.01) ∧ (iter < 100), the density grad operator will only be executed once per 20 iterations

Result:

• Skip some density grad calculation in early placement stage

Placement-Stage-Aware Parameters Scheduling

Precondition matrix of $\tilde{H}^{-1} = (\tilde{H}_W + \lambda \tilde{H}_D)^{-1}$ is applied to accelerate convergence [1]

 $H_W = diag(|S_1|, |S_2|, ..., |S_N|)$ $H_D = diag(A_1, A_2, ..., A_N)$

 $|S_i|$: the number of nets connecting cell *i*, A_i the area of cell *i*

We introduce the precondition weighted ratio $\omega = \frac{\lambda |H_D|}{|H_W| + \lambda |H_D|} \in [0,1]$ to measure the placement stage

[1] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng, et al., "ePlace-MS: Electrostaticsbased placement for mixed-size circuits," IEEE TCAD 2015

Placement-Stage-Aware Parameters Scheduling

Precondition weighted ratio $\omega = \frac{\lambda |H_D|}{|H_W| + \lambda |H_D|} \in [0,1]$

 $\omega > 0.95$ cells are forced to a final position with minimum local penalty

 $0.05 < \omega < 0.95$ cells are spreading over the whole map and the overlap ratio significantly decreases

 $\omega < 0.05$ wirelength-dominated and cells are driven to the position with minimum wirelength

Placement-Stage-Aware Parameters Scheduling

Precondition weighted ratio $\omega = \frac{\lambda |H_D|}{|H_W| + \lambda |H_D|} \in [0,1]$

How to solve a 2D PDE problem by deep learning?

(a)

X Image-to-image networks -> Solve PDE in spatial domain conv

2D Fourier-Neural-Operator (FNO) [1] -> Solve PDE in frequency domain conv

The architecture of the fourier neural operators [1]

Many PDEs can be solved by Fourier transform.

[1] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. M. Stuart, and A. Anandkumar, "Fourier neural operator for parametric partial differential equations," in Proc. ICLR, 2021.

How to solve a 2D PDE problem by deep learning?

X Image-to-image networks -> Solve PDE in spatial domain conv

2D Fourier-Neural-Operator (FNO) [1] -> Solve PDE in frequency domain conv

Poisson's Equation

 $\begin{cases} \nabla \cdot \nabla \psi(x, y) = -\rho(x, y), \\ \hat{\mathbf{n}} \cdot \nabla \psi(x, y) = 0, (x, y) \in \partial R, \\ \iint_R \rho(x, y) = \iint_R \psi(x, y) = 0, \end{cases}$

Electron Distribution $\rho \rightarrow 2D$ Density map *D* of placement

Electric Field $\nabla \psi_x$, $\nabla \psi_y$ -> moving force on x and y-axis

Density Map

Electric Field

Many PDEs can be solved by Fourier transform.

[1] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. M. Stuart, and A. Anandkumar, "Fourier neural operator for parametric partial differential equations," in Proc. ICLR, 2021.

Input
$$I = \{D; M_x; M_y\}$$

$$\begin{cases} Density map D \\ M_x(x, y) = \frac{x}{x} \\ M_y(x, y) = \frac{y}{y} \end{cases}$$

X, *Y* are the map sizes

Input transform: $I_m = FC(I)$ $Freq_{layer}(I_m) = \mathcal{F}^{-1} \Big(\mathcal{W}^T \cdot L(\mathcal{F}(I_m)) \Big)$ $O(I_m) = GELU \Big(Conv_{2D}(I_m) + Freq_{layer}(I_m) \Big) \Big)$ Output transform: $FC^{-1} \Big(O(I_m) \Big)$

W: linear transform, \mathcal{F} : FFT, \mathcal{F}^{-1} : IFFT *FC*: fully-connected layer, *L*: low-pass-filter

Relative L2 Loss:

$$L_2(\mathbf{x}_{\mathbf{i}}, f(\mathbf{x}_{\mathbf{i}}; \theta)) = ||f(\mathbf{x}_{\mathbf{i}}, \theta) - \mathbf{y}_{\mathbf{i}}||_2 / ||\mathbf{y}_{\mathbf{i}}||_2$$

Model Training Data Collection

- 1. ISPD 2005 contest benchmarks with their respective macros
- 2. Standard cells are **randomly** generated at a starting position
- 3. Pushed cells all over the map with only the density objective D(p)
- 4. The density map and electric fields are used as training data and labels

Why train the model in low-resolution data

- 1. The resolution of the input maps will not affect the convolution results
- 2. Low frequency components describe the global information
- 3. Improve the adaptability of the model and speedup inference

How to apply the nn-predicted density gradient $\nabla_{nn}D_{x,y}$

Smooth function: $\sigma(\omega) = 1 - 1/(1 - 5e^{\omega/0.05 - 0.5})$

Total gradient: $\nabla' D_{x,y} = (1 - \sigma) \nabla D_{x,y} + \sigma \nabla_{nn} D_{x,y}$

Experimental Results

Validation on Contest Benchmarks

Benchmarks	DRE	AMPlac	e[1]	Xplace			
Deneminarias	HPWL	GP/s	DP/s	HPWL	GP/s	DP/s	
adaptec1	72.89	4.15	34.9	72.93	1.35	35.8	
adaptec2	81.84	3.73	46.2	81.04	1.58	45.4	
adaptec3	191.68	4.54	88.1	190.94	2.38	89.6	
adaptec4	173.45	4.90	95.4	172.41	2.85	96.1	
bigblue1	89.39	4.03	42.3	89.12	1.47	42.1	
bigblue2	136.57	4.68	129.3	136.56	2.41	127.2	
bigblue3	302.58	8.05	207.9	301.36	5.49	209.8	
bigblue4	742.95	13.38	459.7	741.18	11.65	463.1	
Sum	1791.36	47.46	1103.6	1785.6	29 <mark>.1</mark> 8	1109.0	
Ratio	1.003	1.626	0.995	1.000	1.000	1.000	

DREAMPlace [14] Xplace Benchmarks HPWL GP/s OVFL-5 GP/s DP/s HPWL OVFL-5 DP/s des_perf_1 3.71 64.35 1107.5 65.28 1.31 1106.7 1.14 1.23 fft 1 411.7 56.19 3.59 0.67 411.3 56.34 1.17 0.61 fft 2 47.72 374.0 4.28 0.69 374.3 47.49 1.18 0.64 fft a 627.6 35.12 3.60 0.61 625.6 34.7 1.29 0.70 fft b 845.7 51.82 3.57 0.74 846.2 52.02 1.280.73 matrix mult 1 2129.2 81.02 3.71 2116.4 81.69 1.29 1.44 1.61 matrix_mult_2 2163.3 77.61 3.97 1.63 2152.9 77.95 1.23 1.48 matrix mult a 3036.8 48.10 4.04 2.79 3031.7 48.34 1.29 3.68 superblue12 25803.0 92.45 8.91 25783.8 93.18 17.29 16.37 4.64 superblue14 23015.5 63.56 4.63 23017.1 64.34 1.60 13.74 11.49 superblue19 15633.1 61.82 4.56 8.26 15544.1 62.39 1.46 6.60 des_perf_a† 2020.5 53.27 3.66 2.04 1998.6 52.32 1.18 1.67 des_perf_b[†] 1610.3 54.65 3.66 1.70 1612.6 53.64 1.27 1.58 edit dist a† 4217.9 80.30 3.97 2.314198.7 80.10 1.45 2.13 matrix_mult_b* 2786.7 44.86 3.82 1.98 2765.7 44.98 1.29 1.89 matrix mult c† 2672.9 42.13 4.07 2.07 2675.2 42.20 1.29 1.89 pci bridge32 a⁺ 361.8 30.55 3.54 0.82 356.0 30.36 1.08 0.69 pci_bridge32_b* 741.1 22.89 6.77 1.04 714.2 22.75 1.12 1.04 superblue11_a[†] 33411.2 54.51 5.59 13.33 33528.3 54.78 2.87 12.73 superblue16 a† 25600.9 65.85 4.38 10.60 25505.1 65.85 1.91 11.08 148571 1129.70 88.03 82.06 148364 1129.77 31.03 Sum 82.84 Ratio 1.001 1.000 2.837 0.991 1.000 1.000 1.000 1.000

ISPD 2005

ISPD 2015

Experimental Results

Ablation Studies of the Operator-Level Optimization Techniques

Methods	OR	OC	OE	OS	adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue2	bigblue3	bigblue4	Avg
Ratio	-	-	-	-	234%	194%	136%	124%	198%	140%	123%	121%	159%
	\checkmark	-	-	-	110%	109%	113%	115%	105%	115%	119%	118%	113%
	\checkmark	\checkmark	-	-	107%	107%	107%	108%	104%	108%	113%	112%	108%
	\checkmark	\checkmark	\checkmark	-	104%	102%	104%	104%	102%	104%	106%	105%	104%
Xulace Ratio		100%	100%	100%	100%	100%	100%	100%	100%	100%			
лріасе		GP / Iter Time (ms)			1.478	1.671	2.325	2.688	1.572	2.441	4.974	10.018	-
DREAMPlace		Ratio GP / Iter Time (ms)			462%	345%	288%	254%	376%	288%	199%	158%	296%
					6.832	5.769	6.699	6.840	5.915	7.023	9.904	15.831	-

Experimental Results

Neural-Enhanced Performance

Benchmarks	DREAMPlace			Xplace			Xplace-NN			
Denemiane	HPWL	GP/s	DP/s	HPWL	GP/s	DP/s	HPWL	GP/s	DP/s	
adaptec1	72.89	4.15	34.9	72.93	1.35	35.8	72.84	2.53	34.5	
adaptec2	81.84	3.73	46.2	81.04	1.58	45.4	81.17	2.91	45.2	
adaptec3	191.68	4.54	88.1	190.94	2.38	89.6	191.04	3.47	88.4	
adaptec4	173.45	4.90	95.4	172.41	2.85	96.1	172.38	4.12	94.0	
bigblue1	89.39	4.03	42.3	89.12	1.47	42.1	89.07	2.75	41.8	
bigblue2	136.57	4.68	129.3	136.56	2.41	127.2	136.27	3.56	129.0	
bigblue3	302.58	8.05	207.9	301.36	5.49	209.8	301.26	7.66	210.6	
bigblue4	742.95	13.38	459.7	741.18	11.65	463.1	740.44	15.07	465.7	
Sum	1791.36	47.46	1103.6	1785.6	29.18	1109.0	1784.47	42.07	1109.2	
Ratio	1.003	1.626	0.995	1.000	1.000	1.000	0.999	1.442	1.000	

Conclusions and Future Works

Conclusions

We develop Xplace, a new, fast and extensible GPU accelerated GP framework built on top of PyTorch, to consider factors at operator-level optimization.

- Efficiency: Xplace achieves around 3x speedup per GP iter with better quality compared to DREAMPlace
- **Extensiblity**: we plug into Xplace a novel Fourier neural network and illustrate a possibility of adopting neural guidance in analytical global placement

Future Works

• Handling additional constraints in placement like routability and fence regions

Q&A DESIGN 59 AUTOMATION CONFERENCE