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Global Placement Problem

A fundamental step in VLSI physical design 

• Highly affect the circuit’s PPA

Modern circuits contain millions of standard cells

• Highly increase the computational complexity of GP

• Bring huge challenges to the leading-edge global placers
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Objective:

• Minimize the total HPWL of all the nets 

• Satisfy the cell density constraint

Analytical Global Placement:

• A smooth approximation of HPWL

• A density penalty



GPU-accelerated Global Placers

• Rapid development of GPU’s computational power

• GPU acceleration becomes an important direction

Recently, DREAMPlace[1]

• Implemented the approach of ePlace[2] on GPU 

• Produced the SOTA solution quality and performance 
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It is a big challenge to further improve on DREAMPlace’s

performance.
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Proposed Framework: Xplace



Operator-Level Optimization

1. Wirelength Operator Combination (OC)

Observation: Both the HPWL function and

the stable WA wirelength function need the

min and max cell positions in a net.

Stable WA wirelength

HPWL function

Method: combining the three operators with

heavy wirelength-related workload, WA

wirelength, WA gradient and HPWL, into

one operator

Result: avoid redundant computation of the

min and max function



Operator-Level Optimization

2. Density Operator Extraction (OE)

Overflow ratio and density computation:

𝐷𝑡: target density, 𝐷𝑏: bin 𝑏’s cell density, 𝐴𝑏 and 𝐴𝑡 denote the area for bin 𝑏 and cell 𝑖,



Operator-Level Optimization

Overflow ratio and density computation:

𝐷𝑡: target density, 𝐷𝑏: bin 𝑏’s cell density, 𝐴𝑏 and 𝐴𝑡 denote the area for bin 𝑏 and cell 𝑖,

Need to insert filler cells inside the electrostatic system [1]

𝑉: the set of cells, 𝑉𝑓𝑙: the set of fillers, ෪𝐷𝑏: bin 𝑏’s total density (incl. filler density)

𝐷𝑓𝑙,𝑏: Bin 𝑏’s filler density

2. Density Operator Extraction (OE)
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Operator-Level Optimization

Overflow ratio and density computation:

𝐷𝑡: target density, 𝐷𝑏: bin 𝑏’s cell density, 𝐴𝑏 and 𝐴𝑡 denote the area for bin 𝑏 and cell 𝑖,

Need to insert filler cells inside the electrostatic system [1]

Matrix form of the total density map. ෩𝐷,𝐷, 𝐷𝑓𝑙 ∈ ℝ𝑀×𝑀, 𝑀 is the grid size

2. Density Operator Extraction (OE)
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Operator-Level Optimization

Observation: Both the calculation of 𝑂𝑉𝐹𝐿

and total density map ෩𝐷 need the cell density

map 𝐷.

Method: common sub-operator 𝐷 extraction,

compute the cell density map 𝐷 and the filler

density map 𝐷𝑓𝑙 separately

2. Density Operator Extraction (OE)



Operator-Level Optimization

Result: reduce the total computation time

of the cell density map 𝐷.

2. Density Operator Extraction (OE)

Observation: Both the calculation of 𝑂𝑉𝐹𝐿

and total density map ෩𝐷 need the cell density

map 𝐷.



Operator-Level Optimization

3. Operator Reduction (OR)

Observation:

• The number of forward operators are almost the same as that in the backward

• Invoking the heavy autograd engine will almost double the number of operators

and bring large kernel launching overhead on CPU

Method:

• Avoid invoking the heavy autograd engine

• Directly derive the numerical solutions of the WL / density grad

• Assign a weighted accumulated gradient to each cell

Result: Reduce the total kernel launching time



Operator-Level Optimization

3. Operator Reduction (OR)

Other Methods:

• Use in-place operators as much as possible

• Avoid redundant copying

• Reorder the operators that need sync to the end of the execution queue

• Reduce the frequency of interrupting the GPU pipeline



Operator-Level Optimization

4. Operator Skipping (OS)

Observation:

• The ratio 𝑟 =
𝜆|∇𝐷𝑥,𝑦|

|∇𝑊𝐿𝑥,𝑦|
is ultra-small in the early placement stage

Method:

• When 𝑟 < 0.01 ∧ (𝑖𝑡𝑒𝑟 < 100), the density grad operator will only be executed

once per 20 iterations

Result:

• Skip some density grad calculation in early placement stage



Placement-Stage-Aware Parameters Scheduling
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Precondition matrix of                              is applied to accelerate convergence [1]

We introduce the precondition weighted ratio 𝜔 = ∈ [0,1] to measure the 

placement stage

𝑆𝑖 : the number of nets connecting cell 𝑖, 𝐴𝑖 the area of cell 𝑖



Placement-Stage-Aware Parameters Scheduling

Precondition weighted ratio 𝜔 = ∈ [0,1]

ISPD 2005 / adaptec1

0.95

0.5

0.05
𝜔 < 0.05 wirelength-dominated and cells are driven 

to the position with minimum wirelength

0.05 < 𝜔 < 0.95 cells are spreading over the whole 

map and the overlap ratio significantly decreases

𝜔 > 0.95 cells are forced to a final position with 

minimum local penalty



Placement-Stage-Aware Parameters Scheduling

Precondition weighted ratio 𝜔 = ∈ [0,1]

To fully exploit the optimization space

ISPD 2005 / adaptec1

0.95

0.5

0.05



Extending the Framework via Neural Enhancement
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The architecture of the fourier neural operators [1]

How to solve a 2D PDE problem by deep learning?

Many PDEs can be solved by Fourier transform.

Image-to-image networks -> Solve PDE in spatial domain conv

2D Fourier-Neural-Operator (FNO) [1] -> Solve PDE in frequency domain conv



Extending the Framework via Neural Enhancement

Image-to-image networks -> Solve PDE in spatial domain conv

2D Fourier-Neural-Operator (FNO) [1] -> Solve PDE in frequency domain conv
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How to solve a 2D PDE problem by deep learning?

Electron Distribution 𝜌 -> 2D Density map 𝐷 of placement 

Electric Field ∇𝜓𝑥, ∇𝜓𝑦 -> moving force on x and y-axis Density Map

Poisson's Equation

Many PDEs can be solved by Fourier transform.

Electric Field



Extending the Framework via Neural Enhancement

Input 𝐼 = {𝐷;𝑀𝑥;𝑀𝑦}

Density map 𝐷

𝑀𝑥 𝑥, 𝑦 =
𝑥

𝑋

𝑀𝑦 𝑥, 𝑦 =
𝑦

𝑌

𝑋, 𝑌 are the map sizes

: linear transform,     : FFT,         : IFFT

𝐹𝐶: fully-connected layer, 𝐿: low-pass-filter

Input transform:

Output transform:

Relative L2 Loss:



Extending the Framework via Neural Enhancement

Model Training Data Collection

1. ISPD 2005 contest benchmarks with their respective macros

2. Standard cells are randomly generated at a starting position

3. Pushed cells all over the map with only the density objective 𝐷(𝑝)

4. The density map and electric fields are used as training data and labels

Why train the model in low-resolution data

1. The resolution of the input maps will not affect the convolution results

2. Low frequency components describe the global information

3. Improve the adaptability of the model and speedup inference



Extending the Framework via Neural Enhancement

How to apply the nn-predicted density gradient

Smooth function:

Total gradient:



Experimental Results

Validation on Contest Benchmarks

ISPD 2005 ISPD 2015



Experimental Results

Ablation Studies of the Operator-Level Optimization Techniques



Experimental Results

Neural-Enhanced Performance



Conclusions and Future Works

Conclusions

We develop Xplace, a new, fast and extensible GPU accelerated GP framework built 

on top of PyTorch, to consider factors at operator-level optimization.

• Efficiency: Xplace achieves around 3x speedup per GP iter with better quality 

compared to DREAMPlace

• Extensiblity: we plug into Xplace a novel Fourier neural network and illustrate a 

possibility of adopting neural guidance in analytical global placement

Future Works

• Handling additional constraints in placement like routability and fence regions
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