
Hybrid Modeling and Weighting for Timing-driven Placement
with Efficient Calibration

Bangqi Fu
CSE Department, CUHK
bqfu21@cse.cuhk.edu.hk

Lixin Liu
CSE Department, CUHK
lxliu@cse.cuhk.edu.hk

Martin D.F. Wong
CSE Department, CUHK

mdfwong@cse.cuhk.edu.hk

Evangeline F.Y. Young
CSE Department, CUHK
fyyoung@cse.cuhk.edu.hk

ABSTRACT
Placement is a crucial step in the physical synthesis flow that sig-
nificantly determines the timing performance of a design. In this
paper, we propose a timing-driven global placement framework
with a hybrid pin-based weighting scheme that considers both
graph and path information and an optimization-friendly RC tree
and wirelength model. A calibration method is proposed to further
improve the incremental timing. Experiment results show over 37%
improvement on TNS and 15% improvement onWNS, with 4.2% less
HPWL on the ICCAD 2015 benchmark compared to the state-of-
the-art GPU-accelerated differentiable timing-driven placer, while
also being around 2x faster.

KEYWORDS
Physical design, Global placement, Timing, GPU Acceleration

1 INTRODUCTION
Placement plays a central role in VLSI physical synthesis flow as it
greatly influences the circuit’s PPA (power, performance and area).
The quality of the placement solution has a strong correlation
with the effectiveness of subsequent stages, such as routing, power
optimization, and timing optimization.

As VLSI designs become increasingly complex, it is becoming
necessary to consider multiple objectives during the placement
stage. Among these objectives, timing considerations are particu-
larly crucial, as timing optimization is time-consuming in physical
synthesis cycles and directly influences the performance and relia-
bility of the circuit.

Timing-driven placement can be categorized into net-based, path-
based, and pin-based methods. Net-based methods prioritize timing-
critical nets and aim to reduce the timing delay by shortening the
net wirelength in an implicit manner. Common net-based methods
can further be categorized into static net weighting[1, 10, 16, 25] and
dynamic net weighting[9, 18]. Path-based methods[4, 11, 27], on the
other hand, conduct path-based timing analysis and optimize the
critical timing paths. Although it achieves high quality, the number
of paths grows exponentially and scalability issues arise as the
design size increases, leading to substantial runtime costs. Pin-based
methods offer a trade-off between the previous two approaches,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3676803

employing graph-based timing analysis to directly optimize pin
locations.

Timing-driven placement can be further categorized based on
the optimization method into weight-based and gradient-based
methods. In weight-based methods, timing optimization is achieved
by assigning weights to wirelength objectives according to the
criticality of timing attributes, whereas the gradient-based methods
compute the gradient of timing objectives such as WNS (worst
negative slack) and TNS (total negative slack) to optimize timing.

Recent works proposed advanced methods to achieve better qual-
ity and faster runtime compared to previous works. [18] proposed a
momentum-based net weighting strategy that dynamically adjusts
critical net weights according to historical steps. [8] introduced a dif-
ferentiable timing-driven placement engine with GPU-accelerated
static timing analysis that explicitly computes the pin gradients
concerning timing metrics. [17] developed a timing calibration that
correlates a simple timer to a reference timer and optimizes timing
by a differentiable model for better quality and runtime balance.
[20] presented a multilevel framework that optimizes design timing
according to expected cell distribution. [22] proposed a virtual-
buffer-based delay model that considers the path-sharing effect.

The previous works have limited performance due to the signif-
icant runtime overhead caused by frequent timing analysis invo-
cation, insufficient consideration of abundant timing information,
and the challenges associated with optimizing complex timing ob-
jectives based on Steiner RC tree construction. In this paper, we
propose a novel hybrid RC tree and wirelength model designed
to optimize efficiency, accompanied by a heterogeneous pin-based
weighting scheme that accounts for both graph and path-based
timing information. We further introduce a calibration method to
enhance the incremental timing quality. Our main contribution can
be concluded as:

• We propose a degenerated RC model for consistent timing
estimation and a corresponding timing-driven wirelength
model that enhances the intra-net topology for timing opti-
mization.

• Wepresent a heterogeneous graph/path-based timingweight-
ing to provide abundant information for timing optimization.

• We propose dynamic weight decay that finely adjusts the
pin weights.

• We introduce a timing calibration technique to enhance the
estimated timing accuracy for incremental timing optimiza-
tion.

• We achieve an average improvement of 37% and 15% and up
to 43% and 78% improvement on WNS and TNS compared to
the state-of-the-art GPU-accelerated differentiable timing-
driven placer on ICCAD 2015 benchmarks, while also being
2x faster with better HPWL quality.

https://doi.org/10.1145/3676536.3676803

ICCAD ’24, October 27–31, 2024, New York, NY, USA Bangqi Fu, Lixin Liu, Martin D.F. Wong, and Evangeline F.Y. Young

2 PRELIMINARIES
2.1 Analytical Global Placement
Analytical VLSI placers aim at minimizing the wirelength of a
circuit 𝐺 = (𝐶, 𝐸), where 𝐶 denotes the set of cells and 𝐸 denotes
the set of nets. Let 𝑝 = {(𝑥1, 𝑦1), ..., (𝑥 |𝐶 | , 𝑦 |𝐶 |)} ∈ R |𝐶 |×2 denote
the cell positions, and |𝐶 | is the number of cells. The objective
of the global placement is to minimize the HPWL while ensuring
the non-overlapping between cells. Typically, the analytical global
placement models relax the non-overlapping constraints into a
penalty term:

min
𝑝

∑︁
𝑒∈𝐸

𝑊𝐿𝑒 (𝑝) + 𝜆𝐷 (𝑝) (1)

where𝑊𝐿𝑒 (𝑝) is the wirelength of net 𝑒 and 𝐷 (𝑝) is the density
penalty. A widely used wirelength model is the weighted average
(WA) [12], which is formulated as,

𝑊𝐿𝑒 (𝑝) =𝑊𝐿𝑒 (𝑥) +𝑊𝐿𝑒 (𝑦) (2a)

𝑊𝐿𝑒 (𝑥) =
∑
𝑖∈𝑒 𝑥𝑖𝑒

𝑥𝑖/𝛾∑
𝑖∈𝑒 𝑒𝑥𝑖/𝛾

−
∑
𝑖∈𝑒 𝑥𝑖𝑒

−𝑥𝑖/𝛾∑
𝑖∈𝑒 𝑒−𝑥𝑖/𝛾

(2b)

and similarly for𝑊𝐿𝑒 (𝑦). Regarding the density penalty 𝐷 (𝑝), the
widely used density model is the electrostatic-based method [3, 24].
A smaller coefficient 𝛾 results in a more accurate approximation of
HPWL. The parameter 𝜆 determines the weight of the cell spreading.
The placer initially sets 𝜆 to a small value and gradually increases
it to remove cell overlaps.

2.2 Static Timing Analysis
Static Timing Analysis (STA) is essential for evaluating the timing
performance of a circuit. The graph-based STA is conducted on a
timing graph which is modeled as a directed acyclic graph (DAG)
as shown in Fig. 1. The signals on the primary inputs forward-
propagate through timing arcs on the nets and cells to the primary
outputs. The net delay and cell delay are accumulated during the
propagation. The net delay is computed using the Elmore delay
model [6] and cell delay is queried from the look-up tables (LUTs)
defined in nonlinear delay model (NLDM) libraries. The arrival
time (AT) is the accumulation of net and cell delays along the timing
path. The arrival time at a pin is the𝑚𝑖𝑛 and𝑚𝑎𝑥 quantity of all
of its fan-in arrival time for early and late condition calculation,
which are the best and worst case signal arrival time estimations
respectively. Apart from net and cell arcs, the constrained arc tests
the arrival between the clock and data signals on flip-flops so that
the data signal can arrive at the proper time for setup and hold
constraint of the clock. The required arrival time (RAT) is the valid
arrival time that can satisfy the timing constraints [14]. The slacks
are computed at the endpoints and back-propagated to the primary
inputs as:

𝑆𝑙𝑎𝑐𝑘ℎ𝑜𝑙𝑑 = 𝐴𝑇𝑒𝑎𝑟𝑙𝑦 − 𝑅𝐴𝑇𝑙𝑎𝑡𝑒
𝑆𝑙𝑎𝑐𝑘𝑠𝑒𝑡𝑢𝑝 = 𝑅𝐴𝑇𝑒𝑎𝑟𝑙𝑦 −𝐴𝑇𝑙𝑎𝑡𝑒

(3)

where the 𝐴𝑇 and 𝑅𝐴𝑇 are the actual arrival time and required
arrival time at endpoints under early and late conditions. A positive
slack means a valid arrival time, whereas a negative slack means
a timing violation. The larger the negative slacks are, the worse a
design performs. The timing quality of a design is usually evalu-
ated according to WNS and TNS, which are the worst slack of all

Placement Layout

Net Arc
Setup/Hold

Cell Arc

CK

D Q

PI 0

PI 1

CLK

PO 0

Figure 1: Illustration of timing arcs in static timing analysis.

endpoints and the sum of all endpoint slacks:
𝑊𝑁𝑆 = min

𝑒𝑝∈𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠
𝑆𝑙𝑎𝑐𝑘 (𝑒𝑝)

𝑇𝑁𝑆 =
∑︁

𝑒𝑝∈𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠
min(𝑆𝑙𝑎𝑐𝑘 (𝑒𝑝), 0) (4)

2.3 Timing-driven Placement
Timing-driven placement aims to optimize both the timing metrics
and the wirelength of a design. To achieve such targets, net-based
weighting approaches and differentiable approaches have been
proposed.

The net weighting technique analyzes the placement solution
and reports the most timing-critical nets. The corresponding net
wirelength objective in the original objective function is adjusted
accordingly:

min
𝑝

∑︁
𝑒∈𝐸

𝜔𝑒 ·𝑊𝐿𝑒 (𝑝) + 𝜆𝐷 (𝑝) (5)

where the 𝜔𝑒 is the timing weight associated with net 𝑒 .
The differentiable timing-driven placement [8] computes the

timing gradients on each pin explicitly and back-propagates the
gradients through the timing graph. The gradients are integrated
into the objective function to optimize timing:

min
𝑝

∑︁
𝑒∈𝐸

𝑊𝐿𝑒 (𝑝) + 𝜆𝐷 (𝑝) + 𝑡1𝑊𝑁𝑆 (𝑝) + 𝑡2𝑇𝑁𝑆 (𝑝) (6)

where 𝑡1 and 𝑡2 are the timing objective weights. Both methods rely
on explicit and precise timing analysis, typically performed on a
Rectilinear Steiner Minimal Tree (RSMT) constructed by Flute [5]
to represent the RC tree. The non-continuous nature of RC Steiner
tree construction brings challenges for optimization and introduces
a significant runtime bottleneck.

3 PROPOSED FRAMEWORK
The overall framework of our proposed timing-driven placer is illus-
trated in Fig. 2. We first build the level list for timing propagation
and then start the placement iteration. The placement flow can
be divided into timing analysis, timing calibration, and placement
optimization, distinguished by color. We integrate a degenerated
RC model for timing estimation and invoke a timing calibration
in the late placement stages when the placement optimization be-
comes incremental. The calibration constructs a Flute-based Steiner
tree and caches the RC parameters for the RC calibration. Reported

Hybrid Modeling and Weighting for Timing-driven Placement with Efficient Calibration ICCAD ’24, October 27–31, 2024, New York, NY, USA

Yes

No

No

Yes

Overflow drops by 0.1

Otherwise

Timing
Analysis

Calibration

Placement
Optimization

Initial Placement

Degenerated RC
Construction

Levelization

RC Calibration

GPU STA

Graph/Path
Information

Update Weight

Density
Gradient

Wirelength
Gradient

RC Wirelength
Gradient

Converge?

Calibration? Cache Parameter

Flute Steiner Tree

Legalization & Detailed Placement

Figure 2: The overall flow of our proposed algorithm.

hybrid timing information from a GPU STA is utilized to update
pin-weights for RCwirelength optimization. The proposed methods
will be discussed in detail in the following sections.

3.1 Degenerated RC Tree Model
RC tree construction is essential in STA for delay and slew calcu-
lation. The capacitance and resistance of each net are extracted
according to the tree structure.

To compute the RC parameters in the placement stage, an RSMT
is required to be constructed as an early routing estimation, typ-
ically performed using Flute. Each Steiner point is regarded as a
node in the RC tree. The RC parameters of a wire segment 𝑢𝑣 can
be computed as [13]:

𝐿𝑜𝑎𝑑 (𝑢) = 𝑐𝑎𝑝 (𝑢) +
∑︁
𝑣𝑖 ∈𝐶

𝐿𝑜𝑎𝑑 (𝑣𝑖) (7a)

𝐷𝑒𝑙𝑎𝑦 (𝑣) = 𝐷𝑒𝑙𝑎𝑦 (𝑢) + 𝑟𝑒𝑠 (𝑢𝑣) · 𝐿𝑜𝑎𝑑 (𝑣) (7b)

𝐿𝐷𝑒𝑙𝑎𝑦 (𝑢) = 𝑐𝑎𝑝 (𝑢) · 𝐷𝑒𝑙𝑎𝑦 (𝑢) +
∑︁
𝑣𝑖 ∈𝐶

𝐿𝐷𝑒𝑙𝑎𝑦 (𝑣𝑖) (7c)

𝛽 (𝑣) = 𝛽 (𝑢) + 𝑟𝑒𝑠 (𝑢𝑣) · 𝐿𝐷𝑒𝑙𝑎𝑦 (𝑣) (7d)

𝐼𝑚𝑝𝑢𝑙𝑠𝑒 (𝑣) =
√︁
2𝛽 (𝑣) − 𝐷𝑒𝑙𝑎𝑦2 (𝑣) (7e)

𝑆𝑙𝑒𝑤 (𝑣) =
√︁
𝑆𝑙𝑒𝑤2 (𝑢) + 𝐼𝑚𝑝𝑢𝑙𝑠𝑒2 (𝑣) (7f)

where 𝑢 is the parent node and 𝑣 is the child node, and 𝐶 is the
set of all child node of 𝑢. The variables 𝑐𝑎𝑝 and 𝑟𝑒𝑠 are the node
capacitance and wire resistance derived from the parasitic parame-
ters of the wire. 𝐿𝐷𝑒𝑙𝑎𝑦 and 𝛽 are intermediate variables for 𝑆𝑙𝑒𝑤

400 500 600Iteration

120

140

160

180

TN
S

TNS CurvesTNS Fluctuation

Figure 3: An example of TNS evaluated by Flute constructed
RC tree in the placement iterations.

calculation. The term 𝐼𝑚𝑝𝑢𝑙𝑠𝑒 is the degradation of a gate’s input
𝑆𝑙𝑒𝑤 from its driving gate’s output.

The RC parameters in Equation (7) are computed recursively
along the internal Steiner nodes from the root pin to the sink pins, in-
dicating the dependency of RC computation on the RSMT structure.
When the placement changes during optimization, the change of
pin locations will cause different RSMT structures, and this change
of internal RSMT topology is non-continuous. Thus the routing
topology between two global placement iterations might deviate,
causing divergence in timing optimization based on the explicit RC
tree.

Fig. 3 depicts an example of the inconsistency of a Flute-based
Steiner tree in placement iterations. The large fluctuation of timing
evaluation between iterations will lead to ineffective optimization.
A consistent RC tree constructionwould be beneficial for optimizing
the design’s timing.

To achieve better timing optimization, we propose a consistent
timing analysis with a degenerated RC tree model. Given a net
with a set of pins, we assign the driver pin as the root 𝑟 and the
fan-out pins as sinks 𝑣𝑖 ∈ 𝑆 . We construct a rectilinear spanning
shortest-path tree (SPT) [2] which directly connects the root pin to
each sink pin as illustrated in Fig. 4. Under the spanning SPT, all the
sink pins are driven directly by the root pin and share no common
path parasitic parameters, thus the RC parameters of all pins are
only dependent on the sink-root connection. Without constructing
an RSMT, the RC parameters of pins in the degenerated RC tree
can be computed explicitly as:

𝐿𝑜𝑎𝑑 (𝑟) = 𝑐𝑎𝑝 (𝑟) +
∑︁
𝑣𝑖 ∈𝑆

𝐿𝑜𝑎𝑑 (𝑣𝑖) (8a)

𝐷𝑒𝑙𝑎𝑦 (𝑣𝑖) = 𝑟𝑒𝑠 (𝑟 𝑣𝑖) · 𝐿𝑜𝑎𝑑 (𝑣𝑖) (8b)
𝐼𝑚𝑝𝑢𝑙𝑠𝑒 (𝑣𝑖) = 𝐷𝑒𝑙𝑎𝑦 (𝑣𝑖) (8c)

𝑆𝑙𝑒𝑤 (𝑣𝑖) =
√︁
𝑆𝑙𝑒𝑤2 (𝑟) + 𝐼𝑚𝑝𝑢𝑙𝑠𝑒2 (𝑣𝑖) (8d)

where 𝑟 is the root pin and 𝑣𝑖 are the sink pins. Since the node
capacitance and wire resistance are linear to the segment wire-
length, the RC parameters on the nodes are continuous functions
of the pin locations. Thus the change in objectives 𝐿𝑜𝑎𝑑 and 𝐷𝑒𝑙𝑎𝑦
through the placement iterations can be directly derived from Δ𝑥,𝑦
consistently without constructing an RSMT.

The degenerated RC parameters are propagated through the
timing graph to update the circuit slacks as an early estimation.
We implemented our STA on GPU as in [7], which sorts all the
pins according to their task dependencies and executes the forward
propagation level-by-level on GPU. We further put the backward
propagation on GPU by creating two level lists, with respect to the
forward propagation and the backward propagation. The level lists

ICCAD ’24, October 27–31, 2024, New York, NY, USA Bangqi Fu, Lixin Liu, Martin D.F. Wong, and Evangeline F.Y. Young

Driver Pin (Root)

Spanning SPT
Load Pin (Sink)

A

B C

D

Figure 4: An example of our degenerated RC tree model for a
4-pin net. We regard the driver pin (A) as the root and fan-out
pins (B, C, and D) as sinks, and construct a spanning SPT to
directly connect the root pin to each sink pin.

ensure that different threads on the GPU will visit non-conflicting
timing arcs in parallel. We initialize the level lists in memory so that
they can be reused for timing propagation in different placement
iterations.

3.2 Timing-driven Wirelength Model
Global placement optimizes wirelength as an objective, where many
wirelength models have been adopted. The widely used Weighted
Average (WA) wirelength [12] is a smoothed function that can
be better optimized by gradient descent methods. The model in
[19] further improves wirelength by introducing convexity to the
objective function. The Steiner Wirelength (StWL) [26] aims to
optimize the routing topology during placement. However, none
of these wirelength models aim to improve timing. We introduced
the degenerated RC model in Section 3.1 as an early estimation
of timing performance in placement. To make the optimization
objective consistent with the RC tree structure, we adopt an RCWL
that measures the sink-root distance. Without loss of generality,
the horizontal part of RCWL is given as follows,

𝑅𝐶𝑊𝐿𝑒 (𝑥) =
∑︁
𝑣𝑖 ∈𝑆

|𝑥𝑟 − 𝑥𝑖 | (9)

where 𝑟 is the root pin of net 𝑒 , 𝑣𝑖 ∈ 𝑆 is the set of sink pins and 𝑥𝑟
and 𝑥𝑖 are their corresponding horizontal coordinates. The RCWL
decomposes a net into independent segments that connect sink
pins directly to the root pin. To integrate the RCWL into a gradient
optimizer, we relax the objective into a weighted average sum of
all sink-root segments:

𝑊𝐿𝑖 (𝑥) =
𝑥𝑟𝑒

𝑥𝑟 /𝛾 + 𝑥𝑖𝑒𝑥𝑖/𝛾

𝑒𝑥𝑟 /𝛾 + 𝑒𝑥𝑖/𝛾
− 𝑥𝑟𝑒

−𝑥𝑟 /𝛾 + 𝑥𝑖𝑒−𝑥𝑖/𝛾

𝑒−𝑥𝑟 /𝛾 + 𝑒−𝑥𝑖/𝛾
(10a)

𝑅𝐶𝑊𝐿𝑒 (𝑥) =
∑︁
𝑣𝑖 ∈𝑆

𝜔𝑖 ·𝑊𝐿𝑖 (𝑥) (10b)

where 𝛾 is the WA coefficient discussed in Equation (2), and 𝜔𝑖 is
the weight applied on sink pin 𝑣𝑖 . The smoothed WA RCWL aims
to optimize the intra-net connection so that the total delay between
the sink pins and the root pin can be minimized. The delay on the
critical pins can be reduced by applying a large pin-root weight 𝜔𝑖 .
As Equation (10) intuitively centers the root pin to minimize RCWL
while considering the criticality by pin-root weight, the resulting
TNS and WNS can be simultaneously optimized. The intuition

1

2

3

1

2

3

Sink PinsRoot Pin Internal NodeHeavy Load

Large Delay

Light Load

Small Delay

Figure 5: An example of two identical routing topologies of
the same net. The right one in which the root pin is centered
has better timing with light load and small delay.

behind RCWL is also illustrated in Fig. 5. Two Steiner trees are
constructed for the same net, each with different placement layouts
yet identical RSMTs. However, the right one in which the root pin
is centered has better timing since the sink pins have a smaller
capacitive load due to a shorter sink-root distance. We integrate
the RCWL with a global weight 𝑡 into the objective function in
Equation (1) so that the timing is optimized as:

min
𝑝

∑︁
𝑒∈𝐸

(𝑊𝐿𝑒 (𝑝) + 𝑡 · 𝑅𝐶𝑊𝐿𝑒 (𝑝)) + 𝜆𝐷 (𝑝) (11)

3.3 Hybrid Graph/Path-based Weighting
The work [18] proposed a momentum-based net weighting scheme
to reduce the slacks on critical nets. This net-based weighting
scheme is rough and cannot differentiate the pins in the same net.
We propose a pin-based weighting scheme for a more fine-grained
optimization. Section 3.2 introduced an RC wirelength model that
improves the timing by shortening the sink-root connection. The
weight assigned to each sink-root wire segment underscores its
significance in influencing timing. To further facilitate the timing-
driven wirelength, we propose a hybrid weighting scheme that
considers abundant timing information.

Ourweighting scheme consists of graphweights and pathweights.
The graph weights are derived from the graph-based timing anal-
ysis which reports the pin slacks information. The path weights
are obtained from path extraction which reports the delay informa-
tion of all timing arcs in a path. Given the circuit pins 𝑝𝑖 and the
reported pin slacks 𝑠𝑙𝑖 , we define the graph weights as:

𝜔G,𝑖 =

{
0 , if 𝑠𝑙𝑤𝑜𝑟𝑠𝑡 ≥ 0
max(−𝑠𝑙𝑖 ,0)
|𝑠𝑙𝑤𝑜𝑟𝑠𝑡 | , otherwise

(12)

where the 𝑠𝑙𝑤𝑜𝑟𝑠𝑡 is the WNS value. A pin with a positive slack
value has zero weight, and the pins with larger negative slacks will
be assigned larger weights, which helps to reduce the critical pin
slack by shortening the RCWL.

Regarding the path weight, we select 𝐾 most critical endpoints
and sort them according to their slacks. Then, we report the worst
path of each endpoint and rank them, where the most critical path
will have a rank of 𝑘 = 1. A path 𝑃𝑘 has a set of pins {𝑖 |𝑖 ∈ 𝑃𝑘 }
counting sequentially from the primary input to the endpoint. In
path 𝑃𝑘 , each pair of pins 𝑖 and 𝑗 form a timing arc 𝑖→ 𝑗 . There
are two types of timing arcs, the net arc and the gate arc, which
have net delay and gate delay respectively as shown in Fig. 6. The
net delay is determined as described in Equation (8), depending
on the sink-root wirelength. The gate delay is determined by the
input pin slew and output pin load and is obtained from the LUTs

Hybrid Modeling and Weighting for Timing-driven Placement with Efficient Calibration ICCAD ’24, October 27–31, 2024, New York, NY, USA

Sink Pins
Root Pin

LoadSlew

arc 2

Slew LoadInfluence arc 2 and 3

arc 1 arc 3

Influence arc 1

i+3i+2i+1i

Figure 6: An example of net arc, gate arc and their influencing
pins. The sink pin will influence both its parent arc delay
and child arc delay.

defined in cell libraries. We define the influencing pin of a timing
arc (𝑖→ 𝑗) ∈ 𝑃𝑘 as:

𝑓𝑘 (𝑖→ 𝑗) =
{
𝑖 , if i→j 𝑖𝑠 gate arc
𝑗 , if i→j 𝑖𝑠 net arc

(13)

We define the set of arcs that is influenced by pin 𝑖 as:

S𝑘,𝑖 = {𝑢→𝑣 |𝑖 == 𝑓𝑘 (𝑢→𝑣),∀(𝑢→𝑣) ∈ 𝑃𝑘 } (14)

As the example shown in Fig. 6, the sink-root weight applied on
pin 𝑖 + 2 will influence both arc_2 ((𝑖 + 1)→(𝑖 + 2)) and arc_3
((𝑖+2)→(𝑖+3)) on their delays and slews, thus 𝑖+2 is the influencing
pin of arc_2 and arc_3, and S𝑘,𝑖+2 = {arc_2, arc_3}.

Suppose the arc 𝑢→𝑣 on the path 𝑃𝑘 has 𝑑𝑒𝑙𝑎𝑦𝑘,𝑢𝑣 , we will ac-
cumulate the weighted delay of all the 𝐾 critical paths to the influ-
encing pin 𝑖 and define the path weight as:

𝜔 ′
𝑘,𝑖

=
∑︁

(𝑢→𝑣) ∈S𝑘,𝑖

𝑑𝑒𝑙𝑎𝑦𝑘,𝑢𝑣

𝑘2
(15a)

𝜔 ′
𝑖 =

∑︁
1≤𝑘≤𝐾

𝜔 ′
𝑘,𝑖

(15b)

𝜔P,𝑖 =
𝜔 ′
𝑖

max𝑖∈𝑉 (𝜔 ′
𝑖
) (15c)

where 𝑘 is the rank of a path and𝑉 is the set of all pins. The variable
𝜔 ′
𝑘,𝑖

represents the weight contributed by the 𝑘-th critical path. The
path weight 𝜔P,𝑖 considers the delays of the reported critical paths
and casts them on the influencing pins. As the criticality of a path
increases and the arc delay grows, the value of 𝜔 ′

𝑘,𝑖
added to the

influencing pins will also increase. A pin with a large path weight
indicates that it influences timing critically, by either participating
in numerous paths or constituting a critical arc on a critical path.

We dynamically compute the 𝐾 with a threshold of 3
4WNS. The

endpoints with worse slacks than the threshold will be extracted
their worst paths. The path analysis is executed on GPU, with each
thread handling one path extraction. We record the 𝑎𝑟𝑔𝑚𝑖𝑛 and
𝑎𝑟𝑔𝑚𝑎𝑥 of all fan-in arcs of a pin in the forward propagation of STA
so that the worst path extraction will not incur significant runtime
overhead.

By incorporating the two weights, we obtain a hybrid pin weight:

�̃�𝑖 = 𝛼 · 𝜔G,𝑖 + 𝜔P,𝑖 (16)

where 𝜔G,𝑖 is the graph weight and 𝜔P,𝑖 is the path weight, and 𝛼
is to normalize between the two.

The weight will be dynamically updated in every placement
iteration according to the STA information. However, there are
cases where the placement layout rapidly changes, causing un-
stable updates of the pin weights, which may lead to insufficient
optimization of the placement objectives. A rapid increase in pin
weight means an urgent need to update the weight to avoid wors-
ening of the critical paths, whereas a small change in pin weight
means an unnecessity of updating the weight. To achieve the target
of maintaining the nonsensitive weights and boosting the updates
of critical pin weights, we propose a dynamic decay factor 𝜼, which
is a vector of size equal to the number of pins. Suppose we have a
hybrid pin weight vector �̃� (𝑚) in iteration𝑚, the updated weight
in the next iteration can be written as:

Δ�̃�𝑖 = �̃�
(𝑚+1)
𝑖

− �̃� (𝑚)
𝑖

𝜂𝑖 = 𝜂0 ·
𝑎max(Δ�̃�𝑖 ,0)

𝑏

𝜔
(𝑚+1)
𝑖

= 𝜂𝑖�̃�
(𝑚+1)
𝑖

+ (1 − 𝜂𝑖)𝜔 (𝑚)
𝑖

(17)

where Δ�̃�𝑖 is the change of hybrid pin weights between two iter-
ations, 𝜂0 is the initial decay factor, and 𝑎, 𝑏 are two decay hyper-
parameters. A small Δ�̃� leads to a smaller decay factor, keeping a
stable pin weight. A large Δ�̃� will increase the decay factor so that
the pin weight can react to the rapid change faster.

3.4 Timing Calibration
We have introduced the degenerated RC model in STA and the
RCWL model as placement objectives, which serve as effective esti-
mations of timing in the early stages of placement. However, when
the placement solution converges and the timing analysis becomes
incremental, the gap between the degenerated RC model and the
accurate RSMT-based RC tree will lead to misguidance in the opti-
mization objectives. To tackle this issue, we propose a calibration
method aimed at enhancing the accuracy of the degenerated timing
model.

Our calibration is based on the observation that when the adjust-
ment of the placement layout is small, the structure of the Flute-
constructed Steiner tree will remain similar, as shown in Fig. 7. The
main parameters we are calibrating are the root pin 𝐿𝑜𝑎𝑑 and the
sink pin 𝐷𝑒𝑙𝑎𝑦 as described in Equation (8), which are most influen-
tial to the delay propagation. Note that in the following discussion
we mainly focus on the wire capacitance, and we regard the cell
static capacitance as 0 without loss of generality.

For a wire segment 𝑖→ 𝑗 , the wire capacitive load will be evenly
distributed to the two nodes 𝑖 and 𝑗 , which is proportional to the
segment wirelength𝑤𝑙𝑖 𝑗 . The wire resistance and node capacitance
are:

𝑐𝑎𝑝𝑖 = 𝑐𝑎𝑝 𝑗 =
1
2
𝑤𝑙𝑖 𝑗 · 𝑐𝑎𝑝𝑢𝑛𝑖𝑡

𝑟𝑒𝑠𝑖 𝑗 = 𝑤𝑙𝑖 𝑗 · 𝑟𝑒𝑠𝑢𝑛𝑖𝑡
(18)

where 𝑐𝑎𝑝𝑢𝑛𝑖𝑡 and 𝑟𝑒𝑠𝑢𝑛𝑖𝑡 are the unit length wire capacitance
and resistance. We decompose a net 𝑒 into a set of wire segments
from its tree structure {𝑠𝑒𝑔𝑖 𝑗 |𝑠𝑒𝑔𝑖 𝑗 ∈ 𝑒}, and flatten the recursive
computation of the root pin 𝑙𝑜𝑎𝑑 as:

𝐿𝑜𝑎𝑑𝑒 (𝑟) ≃
∑︁

𝑠𝑒𝑔𝑖 𝑗 ∈𝑒
𝑤𝑙𝑖 𝑗 · 𝑐𝑎𝑝𝑢𝑛𝑖𝑡 =𝑊𝐿𝑒 · 𝑐𝑎𝑝𝑢𝑛𝑖𝑡 (19)

ICCAD ’24, October 27–31, 2024, New York, NY, USA Bangqi Fu, Lixin Liu, Martin D.F. Wong, and Evangeline F.Y. Young

which is proportional to the net wirelength𝑊𝐿𝑒 . We define the cal-
ibration ratio between StWL and RCWL, denoted as 𝑟𝑐𝑎𝑙𝑖 =

𝑆𝑡𝑊𝐿𝑒
𝑅𝐶𝑊𝐿𝑒

,
as the ratio of the accurate 𝐿𝑜𝑎𝑑∗ (derived from the RSMT-based
RC tree) and our estimated 𝐿𝑜𝑎𝑑 (derived from the degenerated RC
model). The calibrated 𝐿𝑜𝑎𝑑𝑐𝑎𝑙𝑖 is:

𝐿𝑜𝑎𝑑𝑐𝑎𝑙𝑖 = 𝑟𝑐𝑎𝑙𝑖 · 𝐿𝑜𝑎𝑑 (20)

In the degenerated RCmodel, the sink pins are connected directly
to the root, whereas in the RSMT-based RC, a pin might share a
common path load with some neighboring pins. Consider a wire
segment 𝑖→ 𝑗 between the root 𝑟 and the sink 𝑣 as shown in Fig. 7(b),
we call the direct path 𝑟→𝑣 as trunk, and the branching nodes as
neighbors. The value of 𝑑𝑒𝑙𝑎𝑦𝑖 𝑗 can be computed as:

𝑙𝑜𝑎𝑑 𝑗 = (𝑐𝑎𝑝1 + 𝑐𝑎𝑝2) + (𝑐𝑎𝑝𝑣 + 𝑐𝑎𝑝 𝑗 + 𝑐𝑎𝑝𝑘)
= 𝑐𝑎𝑝 𝑗,𝑁 + 𝑐𝑎𝑝 𝑗,𝑇

𝑑𝑒𝑙𝑎𝑦𝑖 𝑗 = 𝑙𝑜𝑎𝑑 𝑗 · 𝑟𝑒𝑠𝑖 𝑗 = (𝑐𝑎𝑝 𝑗,𝑁 + 𝑐𝑎𝑝 𝑗,𝑇) · 𝑟𝑒𝑠𝑖 𝑗
= 𝑑𝑒𝑙𝑎𝑦𝑖 𝑗,𝑁 + 𝑑𝑒𝑙𝑎𝑦𝑖 𝑗,𝑇

(21)

where 𝑐𝑎𝑝 𝑗,𝑁 and 𝑐𝑎𝑝 𝑗,𝑇 are the neighbor capacitance and trunk ca-
pacitance, and𝑑𝑒𝑙𝑎𝑦𝑖 𝑗,𝑁 and𝑑𝑒𝑙𝑎𝑦𝑖 𝑗,𝑇 are the neighbor-contributed
delay and trunk-contributed delay respectively. By decomposing
the segment delay into trunk delay and neighbor delay, we can
write the RSMT-based RC 𝐷𝑒𝑙𝑎𝑦 on pin 𝑣 as:

𝐷𝑒𝑙𝑎𝑦∗ (𝑣) ≃
∑︁

𝑠𝑒𝑔𝑖 𝑗 ∈ (𝑟→ 𝑣)
𝑑𝑒𝑙𝑎𝑦𝑖 𝑗 = 𝐷𝑒𝑙𝑎𝑦𝑇 (𝑣) + 𝐷𝑒𝑙𝑎𝑦𝑁 (𝑣)

(22)
where 𝐷𝑒𝑙𝑎𝑦𝑇 and 𝐷𝑒𝑙𝑎𝑦𝑁 are the sum of all segments’ 𝑑𝑒𝑙𝑎𝑦·,𝑁
and𝑑𝑒𝑙𝑎𝑦·,𝑇 respectively. Note that the trunk delay𝐷𝑒𝑙𝑎𝑦𝑇 (𝑣) is the
segmented wire delay of 𝑟→𝑣 without considering the neighboring
effects, whereas the degenerated RC 𝐷𝑒𝑙𝑎𝑦 (𝑣) is a non-segmented
wire delay of 𝑟→𝑣 , also without considering the neighboring effects.
Let 𝜖 = 𝐷𝑒𝑙𝑎𝑦 (𝑣) − 𝐷𝑒𝑙𝑎𝑦𝑇 (𝑣) be a constant delay error between
the segmented and non-segmented wire model. We compute the
compensation as:

𝑐𝑜𝑚𝑝 (𝑣) = 𝐷𝑒𝑙𝑎𝑦∗ (𝑣) − 𝐷𝑒𝑙𝑎𝑦 (𝑣) = 𝐷𝑒𝑙𝑎𝑦𝑁 (𝑣) − 𝜖
𝐷𝑒𝑙𝑎𝑦𝑐𝑎𝑙𝑖 (𝑣) = 𝑐𝑜𝑚𝑝 (𝑣) + 𝐷𝑒𝑙𝑎𝑦 (𝑣)

(23)

where 𝑐𝑜𝑚𝑝 (𝑣) is the error between the estimated RC delay and
the accurate RC delay for delay calibration. The 𝐼𝑚𝑝𝑢𝑙𝑠𝑒 value has
less variation and influence on delay propagation, so we record the
RSMT-based 𝐼𝑚𝑝𝑢𝑙𝑠𝑒∗ as the reference 𝐼𝑚𝑝𝑢𝑙𝑠𝑒 in the subsequent
iterations.

We start performing the Flute RC tree calibration once the place-
ment overflow drops below 0.5, and we will update the cached RC
parameters again every time the overflow decreases by 0.1, where
the overflow is a value in [0, 1] that measures the placement density.

4 EXPERIMENTS
We develop our algorithms using C++ and CUDA, and the experi-
ments are conducted on a Linux machine with a 2.90GHz Intel Xeon
CPU and a single Nvidia RTX 3090 GPU. The core algorithms of
the electrostatic-based placer, the detailed placement and the static
timing analysis are implemented on GPU based on the work [23]
and the work [7].

We evaluate our performance on the ICCAD 2015 contest bench-
marks [15]. The statistics of benchmarks are shown in Table 1. We

(a)

StWL=6 RCWL=7

r v

0 1 2

i j k

delayij=resij × loadj

Neighbor Domain(b)

loadj=(cap1+cap2)+(capv+capj+capk)

Sink PinsRoot Pin Internal Node

DelayN

DelayT

r= StWL/RCWL

Figure 7: An illustration of the calibration of RC parameters.

Table 1: Benchmark statistics

Design #Cells #Nets #Pins

superblue1 1209716 1215710 3767494
superblue3 1213253 1224979 3905321
superblue4 795645 802513 2497940
superblue5 1086888 1100825 3246878
superblue7 1931639 1933945 6372094
superblue10 1876103 1898119 5560506
superblue16 981559 999902 3013268
superblue18 768068 771542 2559143

start the timing optimization at iteration 100, and the 𝛼, 𝑎, 𝑏, 𝑡, 𝜂0
are 0.5, 5, 2, 0.25 and 0.4 respectively.

4.1 Comparison with the State-of-the-art
Timing-Driven Placers

We mainly compare with the state-of-the-art timing-driven plac-
ers, including the net-weighting-based timing-driven placer [18],
differentiable timing-driven placer [8] and cell distribution-based
timing-driven placer [20]. For reference, we also compare with two
open-source placers [21, 23] that do not explicitly incorporate the
timing optimization.

WNS and TNS. The results in Table 2 and Table 3 show that
our work outperforms the state-of-the-art timing-driven placers
significantly with better WNS, TNS, and HPWL, and is also much
faster. Specifically, we achieve overall 14.9% improvement on WNS
and 37% improvement on TNS compared with the differentiable
timing-driven placer [8] and is around 2x faster when both of the
timing-driven placers are GPU-accelerated. The improvement on
TNS is significant, which can be up to 78% on the design superblue1
and superblue16, and the WNS can be reduced by up to 43% on
design superblue16. The results show that we have obtained a much
better solution closer to timing closure.

Our performance has shown better results in almost all the de-
signs for both WNS and TNS. This is because our hybrid timing
information considers the global and local path criticality simultane-
ously. Our RCWL is well-incorporated into the placement objectives
and effectively improves the design timing by explicitly adjusting

Hybrid Modeling and Weighting for Timing-driven Placement with Efficient Calibration ICCAD ’24, October 27–31, 2024, New York, NY, USA

Table 2: WNS (×103)ps and TNS (×105)ps results on the ICCAD 2015 contest benchmarks. The best results are highlighted in
bold brown, and the second-best results are highlighted in bold.

Xplace [23] DREAMPlace [21] DREAMPlace 4.0 [18] Differentiable TDP [8] ISPD24 [20] Ours
Design WNS TNS WNS TNS WNS TNS WNS† TNS† WNS† TNS† WNS TNS

superblue1 -27.884 -252.608 -26.468 -308.946 -14.953 -82.983 -10.770 -74.854 -9.260 -42.100 -7.604 -16.479
superblue3 -31.135 -67.671 -37.255 -66.901 -14.857 -52.039 -12.374 -39.430 -12.190 -26.590 -11.127 -16.770
superblue4 -20.378 -168.254 -21.707 -177.845 -12.339 -141.033 -8.492 -82.924 -8.860 -123.280 -7.061 -70.462
superblue5 -48.582 -150.952 -48.126 -195.090 -30.498 -96.372 -25.212 -108.076 -31.640 -70.350 -24.375 -65.760
superblue7 -19.435 -128.283 -20.477 -163.302 -15.216 -61.981 -15.216 -46.426 -17.240 -95.890 -15.216 -27.080
superblue10 -30.294 -802.622 -29.797 -737.663 -23.322 -658.546 -21.974 -558.054 -25.860 -691.100 -20.070 -509.439
superblue16 -16.175 -322.432 -14.093 -235.292 -13.646 -70.601 -10.854 -87.026 -12.210 -55.990 -6.198 -19.596
superblue18 -21.372 -84.740 -20.414 -90.677 -11.637 -49.355 -7.987 -19.314 -5.250 -19.230 -6.575 -16.044

Sum -215.255 -1977.562 -218.337 -1975.717 -136.468 -1212.908 -112.879 -1016.104 -122.510 -1124.530 -98.226 -741.631
Ratio 2.191 2.667 2.223 2.664 1.389 1.635 1.149 1.370 1.247 1.516 1.000 1.000

† Reported WNS/TNS in [8] and [20] are shown.

Table 3: HPWL(×106) and runtime (seconds) quality on the ICCAD 2015 contest benchmarks. The best results are highlighted in
bold brown, and the second-best results are highlighted in bold.

Xplace [23] DREAMPlace [21] DREAMPlace 4.0 [18] Differentiable TDP [8] Ours
Design HPWL RT HPWL RT HPWL RT HPWL† RT‡ HPWL RT

superblue1 400.3 24.38 410.2 75.67 481.3 536.35 423.8 246.37 408.2 133.64
superblue3 453.1 23.10 457.1 72.59 483.1 733.67 478.4 244.85 457.8 146.67
superblue4 300.2 14.05 314.1 56.38 334.2 248.27 312.2 143.58 303.6 89.72
superblue5 466.2 21.88 468.3 111.60 535.1 628.66 488.7 238.06 473.9 128.15
superblue7 566.3 36.59 599.0 124.10 604.0 814.20 602.1 413.99 576.7 186.29
superblue10 893.8 38.66 904.8 198.28 1086.7 1019.97 934.4 427.20 930.6 206.07
superblue16 418.3 14.20 424.8 16.69 461.9 381.79 485.1 199.85 424.9 93.79
superblue18 226.9 11.49 233.3 27.83 247.5 287.03 243.6 144.15 231.8 88.73

Sum 3724.9 184.35 3811.6 683.14 4233.8 4649.95 3968.3 2058.05 3807.5 1073.07
Ratio 0.978 0.172 1.001 0.637 1.112 4.333 1.042 1.918 1.000 1.000

† Reported HPWLs in [8] are shown. § The ISPD24 [20] did not report the HPWL and runtime.
‡ The runtime of [8] is computed by: reported runtime in [8] ×

∑
Our DREAMPlace runtime∑

reported DREAMPlace runtime in [8] for a fair comparison.

the sink-root connection with the dynamic weight derived from
the hybrid timing information.

Runtime and HPWL. We report the runtime and HPWL in
Table 3. The results show that our placer only has small HPWL
degradation compared with the wirelength-driven placers [21, 23].
It is also notable that our HPWL is shorter than the SOTA differ-
entiable timing-driven-placer [8] by 4.2%, which means that our
method has negligible wirelength overhead when optimizing the
timing constraint.

Our placer also demonstrates efficiency with 2x faster runtime
compared to the differentiable-timing-driven-placer [8] which is
also GPU-accelerated. This is mainly achieved by avoiding frequent
invocation of Steiner tree construction and by putting the forward
propagation, backward propagation and path generation of STA
on GPU. We illustrate the WNS, TNS, HPWL and overflow at dif-
ferent placement iterations in Fig. 8, in which the blue curves are
non-timing-driven, and ours are in pink. We start the timing op-
timization at the 100𝑡ℎ iteration and we can see that the timing

metrics are improved significantly. The HPWL and overflow curves
are almost identical, showing good convergence of our placement
objectives.

4.2 Effectiveness of Timing Calibration
To assess the effectiveness of our timing calibration, we calculate the
normalizedMean Absolute Error (MAE) between the non-calibrated
slacks and the calibrated slacks of our degenerated RC, in com-
parison with the ground-truth slacks generated from the Flute-
constructed Steiner tree as shown in Fig. 9. At the beginning of the
timing iterations when the timing is evaluated by the degenerated
RC model, the error between the estimated slack and accurate slack
is substantial, approximately 6%. The error drops to 0 when cali-
bration is invoked and gradually rises in subsequent iterations. As
we update the calibration parameters again whenever the overflow
drops by 0.1, the placement solution remains similar so the cali-
brated slacks only deviate slightly (under 1%) from the ground-truth
values.

ICCAD ’24, October 27–31, 2024, New York, NY, USA Bangqi Fu, Lixin Liu, Martin D.F. Wong, and Evangeline F.Y. Young

0 200 400 600 800 1000
Iteration

10
1

10
2

W
N

S

0 200 400 600 800 1000
Iteration

10
2

10
3

TN
S

0 200 400 600 800 1000
Iteration

3.0

3.5

4.0

4.5

5.0

5.5

H
P

W
L

1e8

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
O

ve
rfl

ow
Default
Ours

Quality Curves

Figure 8: The quality curves of superblue4 in placement iter-
ations.

100 400 700 1000
Iteration

1%

2%

3%

4%

5%

6%

7%

M
A

E

Slack Mean Absolute Error

Calibration Iter
Calibrated Error
Non-Calibrated Error

Figure 9: TheMAE of endpoint slacks during placement itera-
tions, the error is normalized bymean absolute ground-truth
slack value.

6 5 4 3 2 1 0
Accurate Slack

6

5

4

3

2

1

0

N
on

-c
al

ib
ra

te
d

S
la

ck

y=x

6 5 4 3 2 1 0
Accurate Slack

6

5

4

3

2

1

0

C
al

ib
ra

te
d

S
la

ck

y=x

Estimated Slack / Accurate Slack

Figure 10: The ground-truth slack, non-calibrated slack, and
calibrated slack at the 1000𝑡ℎ iteration.

Fig. 10 shows the scattered points of negative endpoint slacks at
the 1000𝑡ℎ iteration. The calibrated slacks exhibit a strong corre-
lation with the ground-truth slacks as depicted in the right figure,
whereas the non-calibrated slacks deviate significantly from the
accurate values. The correlated slacks offer precise guidance for tim-
ing optimization in the later stages when the change in placement
becomes incremental.

Table 4: Ablation Studies of the proposed techniques on
the ICCAD 2015 benchmarks[15]. GW, PW, DW, TC refer
to graph weight, path weight, dynamic weight decay, and
timing calibration as described in Section 3.

Method GW PW DW TC WNS↑ TNS↑

Ratio

✓ ✓ ✓ ✓ 0.00% 0.00%
✓ ✓ ✓ - 2.17% 6.30%
✓ ✓ - - 5.34% 6.41%
✓ - - - 8.94% 7.72%

4.3 Ablation Studies
To further illustrate the effectiveness of our proposed methods,
we conduct the ablation study as shown in Table 4. We selectively
enable the techniques and evaluate the overall timing quality loss
compared to the baseline. Results show that our proposed tech-
niques can effectively reduce the WNS and TNS.

5 CONCLUSION
In this paper, we propose a new framework for timing-driven place-
ment with hybrid weighting, RC wirelength modeling, and efficient
timing calibration that significantly improves the circuit timing
compared with state-of-the-art works. We believe our work can
be extensible for other timing models. Our future work would be
on further improving the quality and runtime of timing-driven
placement.

REFERENCES
[1] H. Chang, E. Shragowitz, J. Liu, H. Youssef, B. Lu, and S. Sutanthavibul. 2002. Net

criticality revisited: an effective method to improve timing in physical design. In
Proceedings of the 2002 International Symposium on Physical Design (San Diego,
CA, USA) (ISPD ’02). New York, NY, USA, 155–160.

[2] Gengjie Chen, Peishan Tu, and Evangeline F. Y. Young. 2017. SALT: Provably
good routing topology by a novel steiner shallow-light tree algorithm. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 569–576.

[3] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. 2018.
Replace: Advancing solution quality and routability validation in global place-
ment. IEEE TCAD 38, 9 (2018), 1717–1730.

[4] A. Chowdhary, K. Rajagopal, S. Venkatesan, Tung Cao, V. Tiourin, Y. Parasuram,
and B. Halpin. 2005. How accurately can we model timing in a placement engine?.
In Proceedings. 42nd Design Automation Conference, 2005. 801–806.

[5] Chris Chu and Yiu-ChungWong. 2007. FLUTE: Fast lookup table based rectilinear
steiner minimal tree algorithm for VLSI design. IEEE TCAD 27, 1 (2007), 70–83.

[6] William C Elmore. 1948. The transient response of damped linear networks with
particular regard to wideband amplifiers. Journal of applied physics 19, 1 (1948),
55–63.

[7] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. GPU-Accelerated Static
Timing Analysis. In 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). 1–9.

[8] Zizheng Guo and Yibo Lin. 2022. Differentiable-timing-driven global placement.
In Proceedings of the 59th ACM/IEEE Design Automation Conference (San Francisco,
California) (DAC ’22). New York, NY, USA, 1315–1320.

[9] Chrystian Guth, Vinicius Livramento, Renan Netto, Renan Fonseca, José Luís
Güntzel, and Luiz Santos. 2015. Timing-Driven Placement Based on Dynamic
Net-Weighting for Efficient Slack Histogram Compression. In Proceedings of
the 2015 Symposium on International Symposium on Physical Design (Monterey,
California, USA) (ISPD ’15). New York, NY, USA, 141–148.

[10] Bill Halpin, C. Y. Roger Chen, and Naresh Sehgal. 2000. A sensitivity based placer
for standard cells. In Proceedings of the 10th Great Lakes Symposium on VLSI
(Chicago, Illinois, USA) (GLSVLSI ’00). New York, NY, USA, 193–196.

[11] T. Hamada, Chung-Kuan Cheng, and P.M. Chau. 1993. Prime: A Timing-Driven
Placement Tool Using A Piecewise Linear Resistive Network Approach. In 30th
ACM/IEEE Design Automation Conference. 531–536.

Hybrid Modeling and Weighting for Timing-driven Placement with Efficient Calibration ICCAD ’24, October 27–31, 2024, New York, NY, USA

[12] Meng-Kai Hsu, Yao-Wen Chang, and Valeriy Balabanov. 2011. TSV-Aware Ana-
lytical Placement for 3D IC Designs. In Proceedings of the 48th Design Automation
Conference (San Diego, California). New York, NY, USA, 664–669.

[13] Jin Hu, Greg Schaeffer, and Vibhor Garg. 2015. TAU 2015 contest on incremental
timing analysis. In 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 882–889.

[14] Tsung-Wei Huang and Martin D. F. Wong. 2015. OpenTimer: A high-performance
timing analysis tool. In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 895–902.

[15] Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. 2015. ICCAD-
2015 CAD contest in incremental timing-driven placement and benchmark suite.
In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
921–926.

[16] T. Kong. 2002. A novel net weighting algorithm for timing-driven placement. In
IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002.
172–176.

[17] Wuxi Li, Yuji Kukimoto, Gregory Servel, Ismail Bustany, and Mehrdad E. Dehko-
rdi. 2024. Calibration-Based Differentiable Timing Optimization in Non-linear
Global Placement. In Proceedings of the 2024 International Symposium on Physical
Design (ISPD ’24). New York, NY, USA, 31–39.

[18] Peiyu Liao, Dawei Guo, Zizheng Guo, Siting Liu, Yibo Lin, and Bei Yu. 2023.
DREAMPlace 4.0: Timing-Driven Placement With Momentum-Based Net Weight-
ing and Lagrangian-Based Refinement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 42, 10 (2023), 3374–3387.

[19] Peiyu Liao, Hongduo Liu, Yibo Lin, Bei Yu, and Martin Wong. 2023. On a
Moreau Envelope Wirelength Model for Analytical Global Placement. In 2023
60th ACM/IEEE Design Automation Conference (DAC). 1–6.

[20] Jai-Ming Lin, You-Yu Chang, and Wei-Lun Huang. 2024. Timing-Driven Analyti-
cal Placement According to Expected Cell Distribution Range. In Proceedings of
the 2024 International Symposium on Physical Design (ISPD ’24). New York, NY,
USA, 177–184.

[21] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek
Khailany, and David Z Pan. 2020. Dreamplace: Deep learning toolkit-enabled
gpu acceleration for modern vlsi placement. IEEE TCAD 40, 4 (2020), 748–761.

[22] Zhifeng Lin, Min Wei, Yilu Chen, Peng Zou, Jianli Chen, and Yao-Wen Chang.
2024. Electrostatics-Based Analytical Global Placement for Timing Optimization.
In 2024 Design, Automation and Test in Europe Conference and Exhibition (DATE).

[23] Lixin Liu, Bangqi Fu, Shiju Lin, Jinwei Liu, Evangeline F.Y. Young, and Martin D.F.
Wong. 2023. Xplace: An Extremely Fast and Extensible Placement Framework.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2023), 1–1.

[24] Jingwei Lu, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-Chih Chang,
Yiu-Chung Wong, Lu Sha, Dennis Huang, Yufeng Luo, Chin-Chi Teng, et al. 2015.
ePlace-MS: Electrostatics-based placement for mixed-size circuits. IEEE TCAD
34, 5 (2015), 685–698.

[25] Haoxing Ren, D.Z. Pan, and D.S. Kung. 2005. Sensitivity guided net weighting
for placement-driven synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24, 5 (2005), 711–721.

[26] Min Wei, Xingyu Tong, Zhijie Cai, Peng Zou, Zhifeng Lin, and Jianli Chen. 2024.
An Analytical Placement Algorithm with Routing topology Optimization. In 2024
29th Asia and South Pacific Design Automation Conference (ASP-DAC). 294–299.

[27] Carl Sechen William Swartz. 1995. Timing Driven Placement for Large Standard
Cell Circuits. In 32nd Design Automation Conference. 211–215.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Analytical Global Placement
	2.2 Static Timing Analysis
	2.3 Timing-driven Placement

	3 Proposed Framework
	3.1 Degenerated RC Tree Model
	3.2 Timing-driven Wirelength Model
	3.3 Hybrid Graph/Path-based Weighting
	3.4 Timing Calibration

	4 Experiments
	4.1 Comparison with the State-of-the-art Timing-Driven Placers
	4.2 Effectiveness of Timing Calibration
	4.3 Ablation Studies

	5 Conclusion
	References

