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Abstract—The analysis of IR-drop stands as a fundamental
step in optimizing the power distribution network (PDN), and
subsequently influences the design performance. However, tra-
ditional IR-drop analysis using commercial tools proves to be
exceedingly time-consuming. Fast and accurate IR-drop analysis
is desperately in demand to achieve high performance on timing
and power. Recently, machine learning approaches have garnered
attention owing to their remarkable speed and extensibility in IC
designs. However, prior works for dynamic IR-drop prediction
presented limited performance since they did not exploit the time-
varying activities. In this paper, we proposed a dual-path model
with spatial-temporal transformers to extract the static spatial
features and dynamic time-variant activities for dynamic IR
drop prediction. Experimental results on the large-scale advanced
dataset CircuitNet show that our model significantly outperforms
the state-of-the-art works.

Index Terms—IR drop, Power, Machine Learning, Physical
Synthesis

I. INTRODUCTION

IR drop analysis is a crucial step in the integrated circuits
(ICs) design in order to improve the design performance like
power and timing. This analysis specifically focuses on the
voltage drop occurring within the power delivery networks
(PDN5s) when current flows through the power grids. Mitigation
of IR drop is essential to ensure reliable power distribution and
avoid performance degradation in ICs.

As illustrated in Fig. 1, the wires on PDNs are modeled
as segments of resistors. When current flows from the power
source to standard cells, voltage drops along these resistor-
modeled wires, leading to a reduced working voltage at the
standard cell.

IR drop must be restricted under constraints to achieve timing
closure and correct functionality of a circuit. The circuit design
process consists of stages from initial placement to final signoff,
during which IR drop is continually estimated and optimized
to prevent performance degradation.

However, the IR drop analysis algorithms become increas-
ingly complex and time-consuming as the design scale grows,
since they solve a large number of linear equations. Thus,
accurate and fast IR drop analysis is essential for IC design.
The work [1] attempts to accelerate the IR drop analysis
by employing a fast algorithm that separates the traversal of
power grids. While it shows a significant speedup compared
to traditional algorithms, the runtime cost remains exceedingly
expensive.

Machine learning approaches have demonstrated strong po-
tential to accelerate the IR drop analysis with reliable accuracy
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Fig. 1: An illustration of IR drop in a circuit.

throughout design cycles. Many works have been studied in
recent years for IR drop prediction.

The work [2] proposed a framework using the Encoder-
Decoder structure model for design IR drop prediction. [3]
presented a decomposition of power maps to obtain the time-
varying values of power grids for dynamic IR drop prediction.
[4] introduced a 3D convolution network to extract the temporal
features for dynamic IR drop prediction. [5] implemented a
Recurrent model by connecting a series of U-Net models in
series for dynamic IR drop prediction. [6] proposed a spatial-
attention-gated U-Net to better capture the contextual informa-
tion in the decoder. [7] proposed a framework with circuit PDN
structure information. [8] proposed a Graph Neural-Network
(GNN) enhanced model with PDN structure information.

Previous works primarily focus on spatial feature repre-
sentation but lack consideration for the temporal information
in dynamic IR prediction tasks. The [3] takes the maximum
of time frames, the [4] conducts a local 3D convolution on
neighboring time frames, whereas the [5] merges the hidden
information from the previous time frames sequentially. The
aforementioned works only aggregate power map features
through local neighbor time-frames. However, dynamic IR drop
prediction requires capturing power activities from a global
temporal perspective

To tackle the limits of the prior works, we present our dual-
path spatial-temporal model which extracts time-varying power
features. Our main contribution can be summarized as follows:

e We propose a dual-path model incorporating spatial
and temporal transformer blocks, leveraging self-attention
across the dynamic power feature maps.

o We employ a multi-scale hierarchical encoder and 2D/3D
shifting window to effectively extract the long-range in-



formation across the feature maps.

o We adopt a multi-level decoder with fused feature maps
to recover the IR drop hotspot prediction.

« We evaluated our model on large-scale advanced datasets
and demonstrated better quality compared to the state-of-
the-art works.

II. PRELIMINARIES
A. Overview of Dynamic IR Drop Prediction

Dynamic IR drop takes simulation patterns as input and esti-
mates the power demand of standard cells caused by switching
activities and current fluctuations [9]. The IR drop analysis
plays a critical role in VLSI design to mitigate the impact of
IR drop on the design stability and reliability. However, the IR
drop analysis requires substantial computation and simulation
and thus is very time-consuming. This results in heavy runtime
costs in the design cycles. Thus, an accurate and fast IR drop
analysis is in great demand in the early stages of the design to
reduce the turnaround time of a circuit.

Recently, Machine Learning (ML) based methods for IR
drop prediction have been widely studied. The ML methods
leverage power-related features as inputs and predict the IR
drop hotspot. In dynamic IR drop prediction, the power-related
features include cell internal power, switching power, leakage
power, and toggle rates [3]. The clock period is decomposed
into even timing windows and each type of power map is
reported in a timing window. The overall power reports and the
timing window decomposed power reports provide abundant
information in both spatial and temporal domains.

In conclusion, the design layout is split into uniform grid
tiles, and the cell power information is accumulated into the
corresponding tiles. The features power maps can be catego-
rized into:

e DOWeEr; = P;

e POWETs = Pg

o POWETqy = P; + Ps + Pi

® POWET scq = (pl +ps) X Ttog +pl

e power[0, ..., T — 1]
where the p;, ps, P, Ttog are the overall cell internal, switching,
leakage power, and toggles rate. The power; and powers are
power maps derived from internal and switching power, the
power,y; is the overall power, and the powers., is the toggle
rate scaled power. The power; is the toggle rate scaled power
map at a certain timing window.

Current methods for dynamic IR drop prediction can be
categorized into 3 types:

o Treat dynamic power maps as spatial feature channels and

perform 2D Convolution. [3]
o Expand the feature dimension and treat dynamic power
maps as temporal channels to perform 3D Convolution.
(4], [8]
o Conduct sequential models with power maps in neighbor-
ing timing windows. [5]
However, prior works have not fully exploited the dynamic
activities across the timing windows and thus have limited
performance in dynamic IR drop prediction
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Fig. 2: The structures of encoder-decoder model for the image
prediction task.

B. Problem Formulation

Given the image-based input feature maps z; € R#*WxC

with C channels of H x W size feature map, we aim to perform
an image-to-image mapping f : RIXWXC — RHXWxI
that minimize the Mean Absolute Error (MAE) between the
predicted IR drop maps and ground-truth IR drop maps:

Li(yi, f(x1)) = |If(x:) = yillh )

where x;,y,, f denote the i-th input feature map, ground-truth
IR drop map, and the model.

C. Encoder-decoder Model

The encoder-decoder structure is widely utilized in ML tasks.
It is acknowledged for its effectiveness in image-to-image tasks,
preserving high-dimensional representation and reconstructing
images with the original information through a sequence of
decoding layers.

The encoder captures high-dimensional spatial information
and reduces the image size via downsampling convolution
blocks and max pooling layers.

Conversely, in the decoder, the compressed information is
upsampled through convolution blocks to recover the original
input size.

To mitigate the loss of spatial information during the de-
coding stage, models such as U-Net [10] employ a skip-
connection by concatenating the encoded feature maps with
their corresponding decoded feature maps to preserve critical
spatial details.

III. METHODS

Our proposed model addresses the challenge of dynamic IR
drop prediction by leveraging a dual-path Vision Transformer
(ViT) based architecture [11] which extracts multi-scale spatial-
temporal information so that the influence of timing-variant
switching activity can be better captured. A shifting window is
adopted to perceive the features in a global sense. The dual-path
features are fused and decoded to predict the IR drop hotspot.

In the following sections, we will present the ViT-based
multi-scale feature extraction, the shifted window-based trans-
former, the overall architecture of the dual-path spatial-temporal
model, and the hybrid feature decoder.

A. Multi-scale Feature Encoder

Features with different scales involve abundant informa-
tion from global, low-frequency components to local, high-
frequency contexts. To effectively capture the multi-scale in-
formation, we adopt the Swin Transformer architecture as the
encoder [12], [13].
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Fig. 4: (a) An illustration of Multi-head Self Attention block.
(b) The structure of a transformer block.

The encoder first splits the input feature maps into small
patches as a sequence of tokens [11], as illustrated in Fig. 3.
These tokens are projected into high-dimension space as hidden
embeddings. The feature maps are then partitioned into local
windows to perform Multi-Head Self-Attention (MSA) on a
group of patches in the window. The self-attention is conducted
on the entire sequence of tokens, allowing the model to capture
the global dependencies between input and output across the
entire map, which traditional CNNs cannot achieve. The Multi-
Head Self-Attention consists of 3 linear transform layers and
an attention layer. The 3 linear transforms correspond to 3
input sequences: Query(Q), Key(K) and Value(V), which are
projected into multiple heads as illustrated in Fig. 4(a). These
heads will conduct self-attention in parallel. A self-attention
layer can be formulated as:

QKT
Vi
MultiHead(Q, K, V') = Concat(heady, ..., heady,)

head; = Attention(Q;, K;, V;)

Attention(Q;, K;, V;) = Softmax( Wi

2

where d}, is the normalization factor and 7 is the head number.
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Fig. 5: An illustration of (a) 2D Shifted Window. (b) 3D Shifted
Window on the temporal direction.

A hierarchical architecture enables feature extraction in
various scales across different stages of the encoder. The
patches will gradually merge with neighboring patches to scale
down the feature map size and increase the number of feature
channels. By applying the hierarchical structure, a window is
able to capture multi-scale feature representation, with abundant
local and global image information.

To further enhance global representation, the Swin Trans-
former employs a Shifted Window-based MSA (SW-MSA)
scheme, facilitating connections across windows. At each stage
of the transformer, the feature map is partitioned into non-
overlapping windows. Each window contains a group of patches
to perform self-attention and the windows will shift between
consecutive layers as illustrated in Fig. 5(a).

A transformer block consists of 2 consecutive MSA layers
with shifted windows as illustrated in Fig. 4(b). After each
stage of the transformer block, a Multi-layer Linear Perceptron
(MLP) serves to refine and transform the generated contextu-
alized embeddings in MSA layers.

B. 3D Shifted Window based MSA

The dynamic IR drop prediction takes power maps of differ-
ent time frames power[0, ..., T — 1] as input feature maps. To
capture the dynamic activities across time, 3D convolution [4]
has been applied to aggregate the information of neighboring
time frames. The 3D convolution makes a local region aware
of its neighbor’s activities so that the output can be predicted
based on the timing variance. However, the 3D convolution
only aggregates the local neighboring features of power maps
and lacks a global view. To better extract the spatial-temporal
information, we apply a 3D Shifted Window based MSA [14].

The 3D SW-MSA is similar to 2D SW-MSA, except that it
performs patch embedding and local windowing in 3D space.
The input temporal feature map of 7' x H x W x 1 is lifted
T x Hx W x E first and split into 2 x 4 x 4 patches, where E is
the number of hidden embeddings. Each 3D patch is regarded
as a token in the patch sequence and MSA is performed on
the whole sequence based on a 3D local window of 4 x 8 x 8.
After each MSA layer, the window is shifted by half of its size
in the 3 directions so that the whole feature space can have
interaction.

C. Dual Path Spatial-Temporal Model

The overall architecture of our proposed model is shown in
Fig. 6. The model aim to capture both the spatial power features
and also the internal temporal activities of cell powers. Given
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Fig. 6: The overall architecture of our proposed model.
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the input features maps z € R¥XWx*C where x is the the con-

catenated power maps of power;, power,, powergi;, POWET scq
and power|0, ..., T — 1]. We reconstruct and transpose the fea-
ture maps to obtain the 3D temporal maps x; € RTXHxWx1,
which is derived from the power;|0, ..., T'—1], where T denotes
the total number of time frames of power analysis. And we
define the spatial feature x5 = =, which are the overall spatial
feature maps.

The spatial features x; and temporal features x, are fed
into two paths to perform encoding. We first conduct the
patch embedding for both spatial and temporal feature maps
to partition the input features into 4 X 4 and 2 x 4 x 4 patches
correspondingly and lift the embedding channels into E.

The patches are flattened into embedded tokens and fed into
the encoders, where self-attention is applied to extract semantic
information. This is achieved using both 2D and 3D Swin
Transformer blocks, which process the spatial and temporal
dimensions respectively

After each Swin Transformer block, the patching merging
aggregates local patches linearly so that the feature map res-
olutions are downsampled, allowing multi-scale feature repre-
sentation. Note that since the time frame number 7" is not a
large number, we do not merge the temporal dimension after
the 3D Swin Transformer blocks. 7" is 20 in our framework.

In the spatial path, we perform MSA with 2D windows to
aggregate 2D local features, whereas in the temporal path, the
3D windows bridge between different time frames so that the
dynamic power activities can be aware.

We conduct 4 transformer blocks in both paths to obtain
hierarchical multi-scale information, which is then recovered
to the prediction IR-drop map in the decoder.

o

P Concatenation — — —» Skip Connection Conv+Upsample
(b) Decoder Structure

(a) Feature Fusing

Fig. 7: The U-Net decoder with fusing channels.

D. Hybrid Channel Decoder

To recover the original image size, we adopt the U-Net
as the decoder. The U-Net progressively upsamples the high-
dimension feature maps with the skip connection from different
stages of encoders. To combine the multi-scale feature maps of
the dual paths, we perform a feature fusing on the spatial path
feature map z, and temporal path feature map z; as illustrated
in Fig. 7(a):

zb = 2! . Reduce(2))

T 3
Reduce(z!) = Conv3D(z}, PL 1)

where [ is the block number and z,, z; are the internal feature
maps in spatial and temporal paths. The Conv3D(-, £, 1) is
applied on the feature maps of size 2 x W' x H' x E' to
perform a linear transform and reduce the feature dimension to
IxW'x H' x E' 50 that it can match the feature map resolution
as the spatial path. The fused feature maps are upsampled and

recovered in the decoder as illustrated in Fig. 7(b).

IV. EXPERIMENTS

We develop our framework based on PyTorch with CUDA,
and the experiments are conducted on a Linux machine with



TABLE I: Model parameters

Parameter Value
Transformer depth [2,2,2,2]
#Attention heads [3,6,12,24]
Model Patch size 4x4,2x4x4
Window size 8 X 8,4x8x8
#Embeddings 96
Epoch 50
Training Optimizer AdamW
Learning rate 1.00E-03
Weight decay 0.01

TABLE II: CircuitNet-N28 dataset statistics

Set | #Samples | Design | #Cells | #Nets | Cell Area
RISCY-a 45717 47759 65739
Train 7078 RISCY-FPU-a 65793 68351 75985
@ RISCY-b 31311 33970 69779
RISCY-FPU-b 51126 54327 80030
. zero-riscy-a 34299 33970 58631
Test ‘ 3164 ‘ zero-riscy-b ‘ 20946 | 22692 62648

a 2.90GHz Intel Xeon CPU and an Nvidia RTX 3090 GPU.
Our model settings are listed in Table I, where the transformer
depth denotes the number of transformer layers in each block,
number of attention heads denotes the number of parallel self-
attention in the transformer. The 2D/3D patch and window size
correspond to spatial and temporal channels.

We test our performance on the dynamic IR drop prediction
task of CircuitNet [9]. CircuitNet is an open-source dataset
for VLSI CAD applications. It provides over 10K samples
of circuits with different technology nodes. The circuits are
synthesized from 6 different RTL designs with variant syn-
thesis configurations like number of macros, clock frequency,
utilization PDN settings, etc. The large variation of design
features makes CircuitNet a favored dataset to test the model
performance.

We select CircuitNet-N28 with 28nm planar technology as
our dataset, which splits 6 RTL designs into 4 training designs
with 7078 samples and 2 testing designs with 3164 samples.
The dataset statistics are listed in Table II.

We compare our model with the state-of-the-art open-source
dynamic IR drop prediction method MAVIREC [4] and the
multiscale spatial attention-gated model MAUnet [6].

We evaluate the performance of models with Normalized
Mean Absolute Error (NMAE), Normalized Root Mean Square
Error (NRMS), R? correlation, F1 score, and Structural Simi-
larity (SSIM).

The threshold of F1 score hotspot is defined as the top 10%
of the IR drop tiles. IR drop maps are classified into binary
values given the threshold and the F1 score is computed as:

71 :2 x Precision x Recall

Precision + Recall )

TP TP
P+ rp N = TpEN
where the T'P is true positive, F'P is false positive, and F'IN
is false negative value. The NRMS is defined as:

Precision =

[l —yl[2

e e =V

®)

(a) MAVIREC, NMAE=0.055
SSIM=0.648, F1=0.607

(b) MAUnet, NMAE=0.054
SSIM=0.664, F1=0.602

(c) Ours, NMAE=0.045
SSIM=0.716, F1=0.719

(d) Ground-truth

Fig. 8: The IR drop hotspots of (a)MAVIREC; (b)MAUnet;
(c)Ours; (d)Ground-truth.

where Ymax, Ymin are the data range of y and IV is number of
pixels. And the SSIM is defined as:

(2papty + C1) + (2044 + C2)

SSIM(x,y) = 6
V=l ron@r ey ©
where pi,, 11, are the mean values of z,y, 03,05 are their

variance, 0, is the correlation between z,y, and Cq,Cy are
constant parameters.

The NMAE, NRMS, and R2 provide a straightforward view
of the accuracy of the IR drop values, whereas the F1 score
and SSIM give a global view of the structural accuracy of IR
drop hotspots. Note that lower NMAE and NRMS scores are
better, while higher F1, SSIM, and R? scores are better.

A. Dynamic IR drop prediction

The results of dynamic IR drop prediction compared with
other SOTA models are shown in Table III. Performance is
examined on the 2 sets of test designs (zero-riscy-a , zero-
riscy-a ) with 3164 samples in total.

Our model displayed better performance in all metrics. The
NRMS and NMAE are improved by over 30%, highlighting a
better accuracy of our prediction. We also demonstrate a better
F1 score and SSIM score, which means our model presents a
better global sense across the whole circuit. This is achieved
because our model extracts the global feature representation in
both spatial and temporal spaces so that the dynamic power
activities can be well captured.

We demonstrate the IR drop hotspots of the 3 models in
Fig. 8. Our model presents a better prediction quality in a global
view. Besides, the model also better captures the local detailed
features which the other models do not.



TABLE III: Experimental results on CircuitNet for dynamic IR drop prediction. Best results are highlighted in

Design | MAVIREC [4] | MAUnet [6] | Ours
‘NRMS¢ NMAE| FI11 SSIMT R27t ‘NRMS¢ NMAE| FI1 SSIMT R2t ‘NRMSL NMAE| FI1 SSIMT R2t
zero-riscy-a | 0.101 0.032 0.642 0.765 0.919| 0.100 0.030 0.722 0.805 0.921| 0.076 0.022 0.776 0.851 0.955
zero-riscy-b | 0.126 0.038 0.710 0.762 0.826 | 0.129 0.038 0.735 0.773 0.817| 0.103 0.030 0.786 0.818 0.882
Total 0.111 0.035 0.663 0.761 0.882| 0.111 0.033 0.718 0.790 0.881
Ratio 1.30 1.40 0.85 091 0.95 1.30 1.34 092 094 095
J means the smaller the better, 1 means the larger the better.
NMAE Distribution
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Fig. 11: The inference runtime and quality comparison with
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Fig. 9: The normalized error distribution of 3 models.
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Fig. 10: The training loss of our model compared with other
methods.

The normalized error distribution in Fig. 9 indicated that our
prediction has a greater correlation with the accurate value,
with the R? reaching up to 93%.

B. Training and Runtime Analysis

We show the training loss of our model compared with the
other 2 models in Fig. 10. Our model reveals faster and better
convergence than the other 2 models. The inference runtime
comparison is also demonstrated in Fig. 11. Our model has a
much shorter inference time compared with MAVIREC because
we only perform 3D convolution in the patch embedding layer
so that the runtime of our model is linear to the 2D models.
The runtime overhead compared with MAUnet is small and
tolerable in IC design cycles, with commercial tools running
over hours.

C. Ablation Studies

To measure the contribution of our proposed model, we
trained our model with a single spatial and temporal path
separately and tested the performance. The results on NMAE,
SSIM and F1 score shown in Fig. 12 indicate a degradation in

models.

quality compared with the dual-path model, which suggests the
effectiveness of our proposed dual-path model framework.

V. CONCLUSION

In this paper, we propose a dual-path spatial-temporal model.
We present strong quality and runtime compared to the SOTA
works in IR drop prediction tasks. Results on large-scale
advanced datasets exhibit better performance and reliability of
our model. The future work would be on optimizing the design
IR drop based on the prediction results.
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